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A B S T R A C T

As functionally graded materials (FGMs) technology advances, there has been a growing emphasis on the me-
chanical analysis of FGMs structures. Exceeding the yield strength in FGMs structures often leads to irreversible 
plastic deformation in localized regions under applied loads. An analysis of the linear hardening elastoplastic 
model is necessary to assess accurately the load-carrying capacity of these structures. It is assumed that the 
elastic modulus of FGMs spherical shell varies with the thickness distribution of the structure according to a 
power function. This paper provides the exact solutions for the linear hardening elastoplastic model in the FGMs 
spherical shell under mechanical loads, including purely elastic, partially plastic, and fully plastic deformation 
states. The elastoplastic theory is employed to analyze the linear hardening elastoplastic model, and each 
deformation state is thoroughly analyzed. A significant contribution of this research is the presentation of 
comprehensive exact solutions for the linear hardening elastoplastic model in FGMs spherical shell, addressing 
all deformation regions. The findings demonstrate that the radial variation in material properties significantly 
influences the elastoplastic model analysis of the FGMs spherical shell. These conclusions are expected to aid in 
the design of FGMs spherical shells to mitigate yielding under high circumferential stress.

1. Introduction

The progression of composite technology has enabled the develop-
ment of functionally graded materials (FGMs), a novel class of materials 
characterized by superior properties and promising applications across 
various fields. The FGMs provide a continuous transition of properties 
across spatial coordinates, addressing the issue of property discontinu-
ities found at interfaces in traditional composites [1]. In addition, FGMs 
offer benefits such as reduced residual stress and enhanced fracture 
resistance, making them popular in applications like aerospace, civil 
engineering, biomedical engineering, electronic devices, and pressure 
vessels [2,3].

In the past thirty years, significant attention has been given to me-
chanical issues of FGMs annular structures, including annulus, cylin-
drical, and spherical forms. Thorough stress analysis of FGMs annular 
structures is essential. Horgan and Chan [4] examined the classic Lamé 
problem involving a pressurized homogeneous isotropic hollow cylinder 
or circular disk, specifically focusing on a case where elastic modulus 

varies solely with the radial coordinate. Researchers [5,6] considered 
variations in elastic modulus described by power and exponential 
functions and analyzed the stress distributions in FGMs cylinder and 
spherical shell. Subsequently, Shi and Xie [7] refined the stress solutions 
for FGMs structures, addressing and correcting the earlier stress analyses 
conducted in Ref. [5]. Then, Xie et al. [8] derived displacement and 
stress solutions for FGMs cylinder and sphere under combined pressure 
and displacement conditions, validating these with the results of the 
finite difference method. Comprehensive semi-analytical and numerical 
analyses have also been conducted for FGMs with varying properties. Shi 
et al. [9,10], Xie et al. [11] showed that the solution for multi-layered 
cylinders and spherical shells approaches that of continuously varying 
FGMs as the number of layers increases. Li et al. [12] used Fredholm 
integral equations to analyze numerically FGMs spherical shell with 
arbitrarily varying material parameters. Chen and Lin [13], Wang et al. 
[14] applied a multi-scale model to arbitrary FGMs hollow cylinders.

In addition, structural safety analysis under complex conditions, 
including but not limited to thermal loads, which may involve 
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temperature variations causing expansion or contraction of materials, 
and rotational effects, where forces due to spinning or turning can in-
fluence the stability and integrity of the structure, has also been thor-
oughly explored [15–28]. Recently, there has been growing interest in 
multi-field coupling in functionally graded piezoelectric/piezo-
magnetic (FGPE/PM) structures. Saadatfar [29] studied the transient 
response of a hollow cylinder composed of FGPE material under 
hygrothermal loading. Yaghoobi et al. [30] investigated stress distri-
butions in FGPE cylinders and disks under different loads. Based on 
differential quadrature and finite difference methods, a multi-field 
coupling analysis of the FGPE cylinder was presented in Ref. [31]. Shi 
et al. [32] examined magneto-electro-elastic coupling in FGPE/PM 
cylinder and sphere structures. Dai and Dai [33] looked into rotating 
FGPE/PM disks under thermal conditions. Further research has also 
addressed incompressible soft FGMs hollow cylinders and annular thin 
disks [34–37]. Not only does the relevant study provide an efficient tool 
for buckling analysis of FGMs soft structures, but some findings that are 
unique to the FGMs structures are also highlighted.

The study of the elastoplastic model analysis and load-bearing ca-
pacity of various annular structures is essential for assessing structural 
safety, as it allows researchers to understand how these structures 
behave under different loading conditions. Initially, significant ad-
vancements were made in the elastoplastic behavior of homogeneous 
materials. Turner [38] applied the Tresca criterion to analyze elasto-
plastic cylinders using small deformation theory. Grave [39] provided 
stress solutions for disks by elastoplastic model, whereas Wang et al. 
[40] investigated critical pressure distributions with full elastic, partial 
plastic, and complete plastic deformation states. You and Zhang [41] 
examined elastoplastic responses in rotating solid disks. Rees [42] 
compared elastoplastic responses in high-speed rotating disks under von 
Mises and Tresca yield criteria. The elastoplastic deformation model, 
and linear strain hardening in rotating solid disks under the Tresca 
criterion and associated flow rules were investigated in Ref. [43]. Bektas 
[44] derived elastoplastic and residual stress distributions in elastic- 
perfectly plastic composite disks by the Tsai-Hill yield criterion. A 
semi-analytical approach for the study of FGMs spherical shell elasto-
plastic model under thermal and mechanical loads was provided in 
Ref. [45], where material properties are temperature dependent.

Building on these advancements described above, the elastoplastic 
analysis of FGMs structures has also progressed. The elastoplastic 
stresses were derived for the cylinder and rotating FGMs cylinders under 
internal pressure were derived in Refs. [46,47]. The elastic and plastic 
deformation states of FGMs pressurized tubes are investigated in the 
framework of small deformation theory and Tresca’s yield criterion in 
Ref. [48]. Akis and Eraslan [49,50], Eraslan and Akis [51] obtained 
solutions for rotating FGMs hollow cylinders with constant or power 
function-varying yield limits. Exact solutions for rotating FGMs thick- 
walled cylinder [52] and sphere [53], with varying material proper-
ties, were derived using both Tresca and von Mises yield criteria. 
Building on these findings, solutions for FGMs thick cylinders under 
thermal loading [54] and finite difference numerical solutions [55] were 
presented. Hassani et al. [56] used Liao’s homotropy and finite element 
method to analyze stress in rotating FGMs disks under thermal loading. 
Additionally, Atai and Lak [57,58] examined the impact of electric po-
tential on FGMs piezoelectric spheres and cylinders under thermal and 
pressure loads. Xie et al. [59], Shi and Xie [60] gave the unified 
displacement and stresses analytical solutions of two different FGMs 
annular structures in elastoplastic deformation regions under internal 
pressure in detail.

To the best of our knowledge, the analytical solutions for the linear 
hardening elastoplastic of the FGMs spherical sphere under internal 
pressure have not yet been addressed in the current references. The 
linear hardening elastoplastic model effectively describes the transition 
process from elastic to plastic deformation while considering the influ-
ence of material heterogeneity on mechanical properties. Based on a 
linear hardening elastoplastic model, this study investigates the unified 

critical pressures of FGMs spherical structure across various deformation 
states, including full elasticity, partial elasticity and plasticity, and full 
plasticity. Importantly, the analysis of FGMs spherical shell in this study 
begins with an elastic analysis, followed by an elastoplastic analysis. The 
validity of the analytical solutions is confirmed by comparing them with 
established results from Refs. [8], [59] and [61]. The paper is organized 
as follows. The statement and basic equations for the FGMs spherical 
shell are given in Section 2. Then, analytical solutions of the spherical 
symmetry elastoplastic model for FGMs spherical sphere are obtained in 
Section 3. Numerical verifications and discussions are given in Sections 
4 and 5, respectively. Some conclusions are obtained finally.

2. Basic equations for FGMs spherical shell

2.1. Statement and basic equations

As shown in Fig. 1, the schematic of the model considered in this 
paper is given. For the linear hardening elastoplastic model of FGMs 
structures, elastic modulus is Ei(r) = Ei(r/b)β (i = 0 and 1) and yield 
strength is Y0, where β represents a graded parameter. Fig. 1(b) and 1(c) 
illustrate the FGMs spherical shell characterized by the radii a and b, 
respectively. The FGMs structure is under internal pressure p. The 
analysis is a spherically symmetric problem and the spherical polar co-
ordinate system (r, θ, φ) is used in this paper. Given the symmetry of the 
problem, the radial displacement ur(r) is nonzero. It needs to be clarified 
that when E1 = 0, the model considered in this paper degenerates into an 
ideal elastoplastic model.

As illustrated in Fig. 2, the deformations of FGMs spherical shell are 
identified: pure elastic, partial plastic deformations from spherical shell 
inner/outer surface, and full plastic deformation. These are designated 
as Cases A, B, C, and D. Therefore, the FGMs spherical shell exhibits both 
elastic and plastic deformation regions for the middle two Cases. Herein, 
the coordinates marking the interface between different deformation 
regions of FGMs spherical shell are represented as ρ1 and ρ2, 
respectively.

For Cases A (elastic deformation) and D (plastic deformation), the 
boundary conditions are as follows 

σr|r=a = − p, σr|r=b = 0 (1) 

where σr denotes radial stress.
For Case B (partial plastic deformation from FGMs spherical shell 

inner surface), boundary and interface continuity conditions are as fol-
lows 

ue
r(ρ1) = up

r (ρ1), σe
r(ρ1) = σp

r (ρ1),

σe
θ(ρ1) = σp

θ(ρ1), σp
r (a) = − p, σe

r(b) = 0
(2) 

where the superscripts e and p denote the elastic and plastic deformation 
regions, σθ denotes circumferential stress.

For Case C (partial plastic deformation from FGMs spherical shell 
outer surface) 

ue
r(ρ2) = up

r (ρ2), σe
r(ρ2) = σp

r (ρ2),

σe
θ(ρ2) = σp

θ(ρ2), σe
r(a) = − p, σp

r (b) = 0
(3) 

2.2. Elastic solutions

The constitutive equations for FGMs spherical shell are 

σr =
E0(r)

(1 + v)(1 − 2v)
((1 − v)εr + 2vεθ) =

2G0(r)
1 − 2v

((1 − v)εr + 2vεθ) (4) 

σθ =
E0(r)

(1 + v)(1 − 2v)
(vεr + εθ) =

2G0(r)
1 − 2v

(vεr + εθ) (5) 

where v is Poisson’s ratio, εr and εθ are radial and circumferential strains, 
and 
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G0(r) =
E0(r)

2(1 + v)

The geometric equations are 

εr =
dur

dr
, εθ =

ur

r
(6) 

The equilibrium equation is 

dσr

dr
+

2(σr − σθ)

r
= 0 (7) 

Based on Eqs. (4)-(7), the displacement control equation is obtained 
as 

d2ur

dr2 +(β + 2)
dur

rdr
+ 2(βv* − 1)

ur

r2 = 0 (8) 

where 

v* = v/(1 − v)

The solution of the control equation is 

ur = C1rm1 +C2rm2 (9) 

where C1 and C2 are the undetermined coefficients, and 

m1,2 =
1
2

(

− β − 1 ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

β2 − 8βv* + 2β + 9
√ )

Substituting Eq. (9) into Eqs. Eq (4)-Eq (6), the stresses solutions for 
Case A are 

σr = g1rβ+m1 − 1C1 + g2rβ+m2 − 1C2 (10) 

σθ = g3rβ+m1 − 1C1 + g4rβ+m2 − 1C2 (11) 

where 

g1 =
2G00((m1 − 2)v − m1)

2v − 1
, g2 =

2G00((m2 − 2)v − m2)

2v − 1
,

g3 = −
2G00(vm1 + 1)

2v − 1
, g4 = −

2G00(vm2 + 1)
2v − 1

,G00 =
E0

2(1 + v)
.

2.3. Plastic solutions

The stresses and strains satisfy 

εtotal
r =

σr(r) − 2vσθ(r)
E(r)

+ εp
r (r) (12a) 

εtotal
θ = εtotal

φ =
(1 − v)σθ(r) − vσr(r)

E(r)
+ εp

θ(r) (12b) 

The incompressible condition is 

εp
r (r) + εp

θ(r) + εp
φ(r) = 0 (13) 

then 

εtotal
r (r)+ εtotal

θ (r) + εtotal
φ (r) =

(1 − 2v)(σr + 2σθ)

E(r)
(14) 

By combining geometric equations, one can obtain 

σr(r) +2σθ(r) =
E(r)

1 − 2v

(
dur(r)

dr
+ 2

ur(r)
r

)

(15) 

The yield condition can be written as 

σθ(r) − σr(r) = 2G1(r)(εθ(r) − εr(r))+Y0

(

1 −
G1(r)
G(r)

)

(16) 

where 

G1(r) =
E1(r)

2(1 + v)

Fig. 1. Schematic of the model considered in this paper, (a) linear hardening elastoplastic model, (b-c) FGMs spherical shell under pressure p.

Fig. 2. Elastic and plastic deformation regions for FGMs structures.

J. Xie et al.                                                                                                                                                                                                                                       Composite Structures 366 (2025) 119208 

3 



Combining Eqs. (15) and (16), one can obtain 

σr(r) =
(− 8v + 4)G1(r) + E0(r)

3 − 6v
dur(r)

dr

+
2((4v − 2)G1(r) + E0(r))

3 − 6v
ur(r)

r
−

2Y0(G0(r) − G1(r))
3G0(r)

(17) 

σθ(r) =
(4v − 2)G1(r) + E0(r)

3 − 6v
dur(r)

dr

+
2( − 2G1(r)v + E0(r) + G1(r))

3 − 6v
ur(r)

r
+

Y0(G0(r) − G1(r))
3G0(r)

(18) 

Substituting Eqs. (17) and (18) into Eq. (7) to obtain the plastic re-
gion control equation 

d2ur(r)
dr2 +(β + 2)

dur(r)
rdr

− 2λ1
ur(r)

r2 + λ2r− β− 1 = 0 (19) 

where 

λ1 =
((4v − 2)β + 8v − 4)G10 + E0(β − 1)

(8v − 4)G10 − E0
,

λ2 =
6Y0(2v − 1)(G00 − G10)

G00((− 8v + 4)G10 + E0)
,G10 =

E1

2(1 + v)

(20) 

The displacement in the plastic region is 

ur(r) = C3rm3 +C4rm4 +m5r− β+1 (21) 

where C3 and C4 are the undetermined coefficients, and 

m3,4 =
1
2

(

− β − 1 ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

β2 + 2β + 8λ1 + 1
√ )

,m5 =
λ2

2β + 2λ1 − 2
(22) 

Substituting Eq. (21) into Eqs. (17) and (18) yields the stresses as 

σr(r) = C3k1rβ+m3 − 1 +C4k2rβ+m4 − 1 + k3 (23) 

σθ(r) = C3k4rβ+m3 − 1 +C4k5rβ+m4 − 1 + k6 (24) 

where 

k1 =
m3(− 8G10v + E0 + 4G10) + 8G10v + 2E0 − 4G10

3 − 6v
,

k2 =
m4(− 8G10v + E00 + 4G10) + 8G10v + 2E0 − 4G10

3 − 6v
,

k3 = −
2(G00 − G10)Y0

3G00
+

m5(((− 8v + 4)G01 + E0)β − 3E0 )

− 3 + 6v
,

k4 =
m3(4G10v + E0 − 2G10) − 4G10v + 2E0 + 2G10

3 − 6v
,

k5 =
m4(4G10v + E0 − 2G10) − 4G10v + 2E0 + 2G10

3 − 6v
,

k6 =
(G00 − G10)Y0

3G00
+

m5(((4v − 2)G10 + E0)β − 3E0 )

− 3 + 6v
.

(25) 

3. Analytical solution

In this subsection, one analytically explores the FGMs spherical shell 
across various elastoplastic states. This is accomplished by employing 
fundamental solutions pertinent to both different deformation regions.

3.1. Solutions to Case A

For Case A, based on the following conditions 

σr(a) = − p, σr(b) = 0 (26) 

The undetermined coefficients C1 and C2 are obtained 

C1 = −
bβ+m2 − 1p

g1(bβ+m2 − 1aβ+m1 − 1 − aβ+m2 − 1bβ+m1 − 1)
,

C2 =
bβ+m1 − 1p

g2(bβ+m2 − 1aβ+m1 − 1 − aβ+m2 − 1bβ+m1 − 1)

(27) 

Substituting the undetermined coefficients C1 and C2 into Eq. (9), the 
displacement is further obtained as 

ur = −
bβ+m2 − 1prm1

g1(bβ+m2 − 1aβ+m1 − 1 − aβ+m2 − 1bβ+m1 − 1)

+
bβ+m1 − 1prm2

g2(bβ+m2 − 1aβ+m1 − 1 − aβ+m2 − 1bβ+m1 − 1)

(28) 

Substituting the undetermined coefficients C1 and C2 into Eqs. (10) 
and (11), the stresses are further obtained as 

σr = −
bβ+m2 − 1pg1rβ+m1 − 1

g1(bβ+m2 − 1aβ+m1 − 1 − aβ+m2 − 1bβ+m1 − 1)

+
bβ+m1 − 1pg2rβ+m2 − 1

g2(bβ+m2 − 1aβ+m1 − 1 − aβ+m2 − 1bβ+m1 − 1)

(29) 

σθ = −
bβ+m2 − 1pg3rβ+m1 − 1

g1(bβ+m2 − 1aβ+m1 − 1 − aβ+m2 − 1bβ+m1 − 1)

+
bβ+m1 − 1pg4rβ+m2 − 1

g2(bβ+m2 − 1aβ+m1 − 1 − aβ+m2 − 1bβ+m1 − 1)

(30) 

In Case B, it is observed that the maximum difference between 
circumferential stress σθ(r) and radial stress σr(r) occurs at the inner 
surface, where r = a. By substituting r = a and defining σθ(a)-σr(a) = Y0, 
the initial critical yield load at which yielding commences on the inner 
surface of FGMs spherical shell can be determined 

pB
e =

Y0g1g2(bβ+m2 − 1aβ+m1 − 1 − aβ+m2 − 1bβ+m1 − 1)

g2(g1 − g3)bβ+m2 − 1aβ+m1 − 1 + g1(g4 − g2)bβ+m1 − 1aβ+m2 − 1 (31) 

In Case C, it is observed that the maximum difference occurs at the 
outer surface of FGMs spherical shell, where r = b. Based on a similar 
process, the initial critical yield load at which yielding commences on 
the outer surface is 

pC
e =

Y0g1g2(bβ+m2 − 1aβ+m1 − 1 − aβ+m2 − 1bβ+m1 − 1)
(
(g1 − g3)g2 + (g4 − g2)g1

)
b2β+m1+m2 − 2

(32) 

It is evident that internal pressure p attains the lower of pB
e and pC

e 
mentioned above, the FGMs spherical shell experiences partial plastic 
deformation. Therefore, the initial yield critical pressure is 

pe = min{pB
e , p

C
e } (33) 

3.2. Solutions to Case B

For Case B, following boundary conditions in the elastic region are 
considered 

σe
θ(ρ1) − σe

r(ρ1) = Y0, σe
r(b) = 0 (34) 

The undetermined coefficients C1 and C2 are obtained 

C1 =
g2bm2 ρ1− β

1 Y0

− ρm1
1 g2(g1 − g3)bm2 + bm1 ρm2

1 g1(g2 − g4)
,

C2 = −
g1bm1 ρ1− β

1 Y0

− ρm1
1 g2(g1 − g3)bm2 + bm1 ρm2

1 g1(g2 − g4)

(35) 

Substituting the undetermined coefficients C1 and C2 into Eqs. (9)- 
(11), the solutions in the elastic deformation region of FGMs spherical 
shell for Case B are further derived as 
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ue
r(r) =

g2bm2 ρ1− β
1 Y0rm1

− ρm1
1 g2(g1 − g3)bm2 + bm1 ρm2

1 g1(g2 − g4)

−
g1bm1 ρ1− β

1 Y0rm2

− ρm1
1 g2(g1 − g3)bm2 + bm1 ρm2

1 g1(g2 − g4)

(36) 

σe
r(r) =

g1rβ+m1 − 1g2bm2 ρ1− β
1 Y0

− ρm1
1 g2(g1 − g3)bm2 + bm1 ρm2

1 g1(g2 − g4)

−
g2rβ+m2 − 1g1bm1 ρ1− β

1 Y0

− ρm1
1 g2(g1 − g3)bm2 + bm1 ρm2

1 g1(g2 − g4)

(37) 

σe
θ =

g3rβ+m1 − 1g2bm2 ρ1− β
1 Y0

− ρm1
1 g2(g1 − g3)bm2 + bm1 ρm2

1 g1(g2 − g4)

−
g4rβ+m2 − 1g1bm1 ρ1− β

1 Y0

− ρm1
1 g2(g1 − g3)bm2 + bm1 ρm2

1 g1(g2 − g4)

(38) 

For the plastic region, the following boundary conditions and con-
tinuity conditions are considered 

σp
r (a) = − p, ue

r(ρ1) = up
r (ρ1) (39) 

The undetermined coefficients C3 and C4 are obtained as 

C3 =
− ρm4

1 (p + k3)a1− β + k2am4
(
m5ρ1− β

1 − C1ρm1
1 − C2ρm2

1
)

− ρm3
1 am4 k2 + ρm4

1 am3 k1
,

C4 =
ρm3

1 (p + k3)a1− β − k1am3
(
m5ρ1− β

1 − C1ρm1
1 − C2ρm2

1
)

− ρm3
1 am4 k2 + ρm4

1 am3 k1

(40) 

The displacement and stresses in the plastic deformation region for 
Case B are further obtained as 

up
r (r) =

− ρm4
1 (p + k3)a1− β + k2am4

(
m5ρ1− β

1 − C1ρm1
1 − C2ρm2

1
)

− ρm3
1 am4 k2 + ρm4

1 am3 k1
rm3

+
ρm3

1 (p + k3)a1− β − k1am3
(
m5ρ1− β

1 − C1ρm1
1 − C2ρm2

1
)

− ρm3
1 am4 k2 + ρm4

1 am3 k1
rm4 + m5r1− β

(41) 

σp
r (r) =

− ρm4
1 (p + k3)a1− β + k2am4

(
m5ρ1− β

1 − C1ρm1
1 − C2ρm2

1
)

− ρm3
1 am4 k2 + ρm4

1 am3 k1
k1rβ+m3 − 1

+
ρm3

1 (p + k3)a1− β − k1am3
(
m5ρ1− β

1 − C1ρm1
1 − C2ρm2

1
)

− ρm3
1 am4 k2 + ρm4

1 am3 k1
k2rβ+m4 − 1 + k3

(42) 

σp
θ(r) =

− ρm4
1 (p + k3)a1− β + k2am4

(
m5ρ1− β

1 − C1ρm1
1 − C2ρm2

1
)

− ρm3
1 am4 k2 + ρm4

1 am3 k1
k4rβ+m3 − 1

+
ρm3

1 (p + k3)a1− β − k1am3
(
m5ρ1− β

1 − C1ρm1
1 − C2ρm2

1
)

− ρm3
1 am4 k2 + ρm4

1 am3 k1
k5rβ+m4 − 1 + k6

(43) 

Using the stress continuity condition σe
r(ρ1) = σp

r (ρ1), one obtains 

p =
g1ρβ+m1 − 1

1 C1 + g2ρβ+m2 − 1
1 C2 − c3k1ρβ+m3 − 1

1 − c4k2ρβ+m4 − 1
1 − k3

ρm3
1 a1− βk2ρβ+m4 − 1

1 − ρm4
1 a1− βk1ρβ+m3 − 1

1
− ρm3

1 am4 k2+ρm4
1 am3 k1

(44) 

where 

c3 =
− ρm4

1 a1− βk3 + k2am4
(
m5ρ1− β

1 − C1ρm1
1 − C2ρm2

1
)

− ρm3
1 am4 k2 + ρm4

1 am3 k1

c4 =
ρm3

1 a1− βk3 − k1am3
(
m5ρ1− β

1 − C1ρm1
1 − C2ρm2

1
)

− ρm3
1 am4 k2 + ρm4

1 am3 k1

(45) 

3.3. Solutions to Case C

For Case C, the following boundary conditions in the elastic region 
are considered 

σe
r(a) = − p, σe

θ(ρ2) − σe
r(ρ2) = Y0 (46) 

The undetermined coefficients C1 and C2 are obtained 

C1 = c1 − pc10,C2 = c2 + pc20, (47a) 

where 

c1 =
ρ1− β

2 am2 g2Y0

am1 g1(g2 − g4)ρm2
2 − am2 ρm1

2 g2(g1 − g3)
,

c10 =
ρm2

2 (g2 − g4)a1− β

am1 g1(g2 − g4)ρm2
2 − am2 ρm1

2 g2(g1 − g3)
,

c2 =
− ρ1− β

2 am1 g1Y0

am1 g1(g2 − g4)ρm2
2 − am2 ρm1

2 g2(g1 − g3)
,

c20 =
ρm1

2 (g1 − g3)a1− β

am1 g1(g2 − g4)ρm2
2 − am2 ρm1

2 g2(g1 − g3)

(47b) 

Substituting the undetermined coefficients C1 and C2 into Eqs. (9)- 
(11), the solutions in the elastic deformation region for Case C are 
further derived as follows 

ue
r(r) = (c1 − pc10)rm1 +(c2 − pc20)rm2 (48) 

σe
r(r) = g1rβ+m1 − 1(c1 − pc10)+ g2rβ+m2 − 1(c2 − pc20) (49) 

σe
θ(r) = g3rβ+m1 − 1(c1 − pc10)+ g4rβ+m2 − 1(c2 − pc20) (50) 

For the plastic region, the following boundary conditions and con-
tinuity conditions are considered 

σp
r (b) = 0, ue

r(ρ2) = up
r (ρ2) (51) 

The undetermined coefficients C3 and C4 are obtained as 

C3 =
− b1− βρm4

2 k3 + bm4 (m5ρ1− β
2 − C1ρm1

2 − C2ρm2
2 )k2

− ρm3
2 bm4 k2 + ρm4

2 bm3 k1

C4 =
b1− βρm3

2 k3 − bm3 (m5ρ1− β
2 − C1ρm1

2 − C2ρm2
2 )k1

− ρm3
2 bm4 k2 + ρm4

2 bm3 k1

(52) 

The displacement and stress in the plastic deformation region for 
Case C are further obtained as 

up
r (r) =

(
− b1− βρm4

2 k3 + bm4 (m5ρ1− β
2 − C1ρm1

2 − C2ρm2
2 )k2

− ρm3
2 bm4 k2 + ρm4

2 bm3 k1

)

rm3

+

(
b1− βρm3

2 k3 − bm3 (m5ρ1− β
2 − C1ρm1

2 − C2ρm2
2 )k1

− ρm3
2 bm4 k2 + ρm4

2 bm3 k1

)

rm4 + m5r1− β

(53) 

σp
r (r) =

(
− b1− βρm4

2 k3 + bm4 (m5ρ1− β
2 − C1ρm1

2 − C2ρm2
2 )k2

− ρm3
2 bm4 k2 + ρm4

2 bm3 k1

)

k1rβ+m3 − 1

+

(
b1− βρm3

2 k3 − bm3 (m5ρ1− β
2 − C1ρm1

2 − C2ρm2
2 )k1

− ρm3
2 bm4 k2 + ρm4

2 bm3 k1

)

k2rβ+m4 − 1 + k3

(54) 

σp
θ(r) =

(
− b1− βρm4

2 k3 + bm4 (m5ρ1− β
2 − C1ρm1

2 − C2ρm2
2 )k2

− ρm3
2 bm4 k2 + ρm4

2 bm3 k1

)

k4rβ+m3 − 1

+

(
b1− βρm3

2 k3 − bm3 (m5ρ1− β
2 − C1ρm1

2 − C2ρm2
2 )k1

− ρm3
2 bm4 k2 + ρm4

2 bm3 k1

)

k5rβ+m4 − 1 + k6

(55) 

Using the stress continuity condition σe
r(ρ2) = σp

r (ρ2), one obtains 

p =
g1ρβ+m1 − 1

2 c1 + g2ρβ+m2 − 1
2 c2 − k3 − c3k1ρβ+m3 − 1

2 − c4k2ρβ+m4 − 1
2

c30k1ρβ+m3 − 1
2 + c40k2ρβ+m4 − 1

2 + g1ρβ+m1 − 1
2 c10 − g2ρβ+m2 − 1

2 c20
(56) 

where 
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c3 =
− b1− βρm4

2 k3 + bm4 k2m5ρ1− β
2 − bm4 k2ρm1

2 c1 − bm4 k2ρm2
2 c2

− ρm3
2 bm4 k2 + ρm4

2 bm3 k1
,

c30 =
bm4 k2ρm1

2 c10 − bm4 k2ρm2
2 c20

− ρm3
2 bm4 k2 + ρm4

2 bm3 k1
,

c4 =
b1− βρm3

2 k3 − bm3 k1m5ρ1− β
2 + bm3 k1ρm1

2 c1 + bm3 k1ρm2
2 c2

− ρm3
2 bm4 k2 + ρm4

2 bm3 k1
,

c40 =
− bm3 k1ρm1

2 c10 + bm3 k1ρm2
2 c20

ρm4
2 bm3 k1 − ρm3

2 bm4 k2

(57) 

3.4. Solutions to Case D

The fully plastic deformation is discussed here. Conversely, in Case B, 
full plasticity is initiated when ρ1 = b. By substituting ρ1 = b into Eq. 
(44), the critical load can be determined as follows 

pB
s =

g1bβ+m1 − 1C(b)
1 + g2bβ+m2 − 1C(b)

2 − c(b)3 k1bβ+m3 − 1 − c(b)4 k2bβ+m4 − 1 − k3
a1− βk2bβ+m3+m4 − 1 − a1− βk1bβ+m3+m4 − 1

bm4 am3 k1 − bm3 am4 k2

(58) 

where 

C(b)
1 =

g2b1+m2 − βY0

bm1+m2
(
g1(g2 − g4) − g2(g1 − g3)

),

C(b)
2 = −

g1bm1 b1− βY0

bm1+m2
(
g1(g2 − g4) − g2(g1 − g3)

),

(59a) 

c(b)3 =
− bm4 a1− βk3 + k2am4

(
m5b1− β − C(b)

1 bm1 − C(b)
2 bm2

)

bm4 am3 k1 − bm3 am4 k2
,

c(b)4 =
bm3 a1− βk3 − k1am3

(
m5b1− β − C(b)

1 bm1 − C(b)
2 bm2

)

bm4 am3 k1 − bm3 am4 k2

(59b) 

In Case C, by substituting ρ2 = a in Eq. (56), the critical load can be 
also determined as follows 

pC
s =

g1aβ+m1 − 1c(a)1 + g2aβ+m2 − 1c(a)2 − k3 − c(a)3 k1aβ+m3 − 1 − c(a)4 k2aβ+m4 − 1

c(a)30 k1aβ+m3 − 1 + c(a)40 k2aβ+m4 − 1 + g1aβ+m1 − 1c(a)10 − g2aβ+m2 − 1c(a)20

(60) 

where 

c(a)1 =
am2+1− βg2Y0

am1+m2
(
g1(g2 − g4) − g2(g1 − g3)

),

c(a)10 =
am2+1− β(g2 − g4)

am1+m2
(
g1(g2 − g4) − g2(g1 − g3)

),

(61a) 

c(a)2 =
− am1+1− βg1Y0

am1+m2
(
g1(g2 − g4) − g2(g1 − g3)

),

c(a)20 =
am1+1− β(g1 − g3)

am1+m2
(
g1(g2 − g4) − g2(g1 − g3)

),

(61b) 

c(a)3 =
− b1− βam4 k3 + bm4 k2m5a1− β − bm4 k2am1 c1 − bm4 k2am2 c2

am4 bm3 k1 − am3 bm4 k2
,

c(a)30 =
bm4 k2am1 c10 − bm4 k2am2 c20

am4 bm3 k1 − am3 bm4 k2
,

(61c) 

c(a)4 =
b1− βam3 k3 − bm3 k1m5a1− β + bm3 k1am1 c1 + bm3 k1am2 c2

am4 bm3 k1 − am3 bm4 k2
,

c(a)40 =
− bm3 k1am1 c10 + bm3 k1am2 c20

am4 bm3 k1 − am3 bm4 k2

(61d) 

The critical load of fully plastic deformation is 

ps = max{pB
s , p

C
s } (62) 

Then, the exact solutions for pe of Eq. (33) and ps of Eq. (62) in the 
different states and displacement solutions of Eqs. (28), (36), (41), (48), 
(53) and stresses solutions of Eqs. (29)-(30), (37)-(38), (42)-(43), (49)- 
(50), (54)-(55) of the FGMs spherical shell can be given. The analytical 
solutions derived in this study systematically characterize the 
displacement and stress distributions of FGMs spherical shell under 
linear hardening elastoplastic conditions. Three key influencing factors 
are quantitatively analyzed: internal pressure, material gradient 
parameter, and elastic modulus variation. This research primarily em-
ploys Python for analytical solution computation and data processing.

4. Numerical verifications

The theoretical derivation is validated by comparing it with estab-
lished solutions from existing references.

4.1. Elastic region verification

In Case A, the results obtained in this study are compared with those 
presented in Ref. [8]. As illustrated in Fig. 3, the radial and circumfer-
ential stresses distributions for the FGMs spherical shell align closely 
with the findings in Ref. [8], thereby validating the derivation of stresses 
in Case A. It’s worth noting that the parameters considered are the same 
as in Ref. [8] when E1 = 0 GPa.

4.2. Elastoplastic region verification

In the context of solutions in the plastic deformation region, one 
analyses the degradation results in this paper in comparison with 
theoretical solutions presented in Ref. [61]. When β = 0, the problem 
under investigation reduces to an elastoplastic solution for a hollow 
spherical shell composed of homogeneous materials, as outlined in 
Ref. [61]. As evidenced in Fig. 4(a) and 4(b), the findings from this study 
are quite the same as the solutions previously reported in Ref. [61]. 
Furthermore, Fig. 4 illustrates that under the given loading conditions, 
plastic deformation in a homogeneous spherical shell initiates at the 
inner diameter and subsequently propagates radially outward. It’s worth 
noting that the parameters utilized in this analysis align with those 
specified in Ref. [61] and E0 = 200 GPa, E1 = 220 GPa, Y0 = 300 MPa, 
and β = 0.

Furthermore, the extent of the elastoplastic deformation region is 
influenced by both internal pressure p and the gradient parameter β. 
Tables 1 and 2 present a comparative analysis of deformation states 
under varying internal pressure and the gradient parameter β, juxta-
posed with results based on Ref. [59]. The yield strength is Y(r) = Y0(r/ 
b)α, where Y0 is the yield strength and α is the gradient parameter in 
Ref. [59]. The parameters employed are set as a = 0.6 m, b = 1 m, Y0 =

100 MPa, E0 = 300 GPa, v = 0.3 and E1 = 0 GPa. Table 1 indicates that 
for FGMs spherical shell, when β = − 2, an increase in internal pressure 
leads to a sequence of deformation states: Cases A, B and D. In Table 2, at 
an internal pressure of p = 50 MPa, an increase in β transitions the FGMs 
spherical shell through Cases B, A, and C. The findings in Tables 1 and 2
demonstrate a consistent deformation state for the FGMs spherical shell 
between this study and Ref. [59]. Notably, the coordinates ρ are in close 
agreement with results in Ref. [59]. The difference (Δ) is defined as Δ =

|ρnow − ρprevious|/ρnow × 100%.

5. Numerical discussions

These subsequent results and analyses elucidate the influence of p 
and β on the linear hardening elastoplastic model in FGMs spherical 
shell, where a = 0.6 m, b = 1 m, v = 0.3.
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5.1. Critical load and elastoplastic interface

The initial yield critical load pe and critical load ps of fully plastic 
deformation are influenced by the gradient parameter, geometric 
dimension, and yield strength. Fig. 5 illustrates the influence of the 
varying gradient parameter and yield strength on initial yield critical 
pressure pe and full yield critical pressure ps with E0 = 300 GPa. A 
detailed analysis of pe and ps is presented. When the pressure p on the 
inner surface of the FGMs spherical shell exceeds pe but remains below 

ps, the structure enters a state of partial plastic and elastic deformation 
(Cases B or C). Conversely, with p surpassing ps, the structure experi-
ences full plastic deformation (Case D). As shown in Fig. 5(a), for a given 
Y0, the pe exhibits a nonlinear trend of gradual increase with the increase 
of gradient parameter. This nonlinear behavior is attributed to the shift 
of the initial yield position from the inner surface to the outer surface of 
the FGMs spherical shell as β increased. Fig. 5 shows that as β increases, 
pB

s decreases and pC
s increases gradually. In addition, as the E1 increases, 

pB
s decreases but pC

s increases.

Fig. 3. Comparison of two results for stress distributions.

Fig. 4. Comparison of two results for stress distributions.

Table 1 
A comparison of the deformation state of the FGMs spherical shell for different 
internal pressures with previous results in Ref. [59].

Previous results in Ref. [59] Present results in this paper difference (Δ)

α =0, β =-2 E1 = 0, β = − 2

p (MPa) Cases ρ (m) p (MPa) Cases ρ (m)

10 A − 10 A − −

30 A − 30 A − −

50 B 0.637743 50 B 0.637660 0.0130 %
80 B 0.770712 80 B 0.770564 0.0192 %
100 B 0.932582 100 B 0.932556 0.0028 %
120 D 1.000000 120 D 1.000000 0.0000 %

Table 2 
A comparison of the deformation state of the FGMs spherical shell for different 
gradient parameters with previous results in Ref. [59].

Previous results in Ref. [59] Present results in this paper difference (Δ)

α =0, p = 50 MPa E1 = 0, p = 50 MPa

β Case ρ (m) β Case ρ (m)

− 5 B 0.677594 − 5 B 0.677516 0.0115 %
− 1 B 0.617393 − 1 B 0.617304 0.0144 %
0 A − 0 A − −

1 A − 1 A − −

5 A − 5 A − −

10 C 0.9675736 10 C 0.967580 0.0007 %
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The radial coordinates marking the interface between the elastic and 
plastic deformation regions are inherently influenced by both the in-
ternal pressure and the gradient parameter. This subsection examines 
the impact of these factors on the size of the elastoplastic deformation 
region.

Table 3 presents the influence of p and β on deformation states and 
interface ρ of the FGMs spherical shell. The parameters selected are Y0 =

100 MPa, E0 = 300 GPa, E1 = 200 GPa. From Table 3, it is evident that 
for the FGMs sphere, an increase in p results in a sequence of deforma-
tion states: elastic deformation (Case A), followed by partial plastic 
deformation (Case B), and ultimately leading to full plastic deformation 
(Case D) when β = -2. Additionally, as β increases, the FGMs spherical 
shell exhibits a sequence of deformation states at an internal pressure of 
p = 50 MPa, and the deformation states of the FGMs spherical shell are 
Cases A, C, and D in that order.

A detailed analysis is conducted on the critical loads corresponding 

to pure elastic and partial plastic deformation states that may occur in 
FGMs spherical shell. When the pressure is below the initial yield critical 
load pe, the FGMs spherical shell remains in a purely elastic deformation 
state. For pressures greater than pe but less than the critical load of fully 
plastic deformation ps, the shell experiences partial plastic deformation. 
When the pressure reaches ps, the shell enters a fully plastic deformation 
state.

5.2. Effect of internal pressure

Herein, one considers the influence of elastic modulus on the 
displacement and stresses distributions.

Fig. 6 depicts the influence of p on the deformation behavior within 
FGMs spherical shell where Y0 = 200 MPa, E0 = 300 GPa, E1 = 200 GPa. 
For a given p ∈ [0, 300 MPa] and β ∈[− 5, 5], the deformation state can 
be evaluated from Fig. 6(a). When the β and p values fall within the 
region indicated by blue points, the FGMs structure state is Case A. If the 
parameter values lie within the region marked by green points, the FGMs 
structure state is Case B. Conversely, when the β and p values correspond 
to the region represented by black points, the FGMs structure state is 
Case D. Notably, under the current loading conditions and gradient 
parameters, there is no observed Case C. The behaviors associated with 
the blue, green, and black points regions in Figs. 7 and 8 are consistent 
with those in Fig. 6(a). Specifically, for p ∈ [0, 300 MPa], and β ∈[− 5, 5], 
the dominant deformation state is Case B. For − 5 ≤ β < 1, an increase in 
internal pressure p transitions the deformation state from Cases A to B. In 
the range 1≤ β <3, the deformation states progress sequentially from 
Cases A to B and ultimately to D as internal pressure increases. For 3≤ β 
≤5, as internal pressure p increases, the deformation states transition 

Fig. 5. The influence of β and Y0 on critical pressure values.

Table 3 
The state of FGMs spherical shell for different internal pressures and the gradient 
parameter.

β=-2 p = 50 MP

p (MPa) Case ρ (m) β Case ρ (m)

10 A − − 5 B 0.657056
30 A − − 1 B 0.616496
50 B 0.633544 0 A −

80 B 0.708144 1 A −

100 B 0.747164 5 A −

120 B 0.780480 10 C 0.970620
350 D 1.000000 15 C 0.942608
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from Cases A to D. Fig. 6(b)-(d) present the displacement, circumfer-
ential stress, and the difference between radial and circumferential 
stresses for β =2 at internal pressures of 50, 80, 150, and 180 MPa, 
respectively. The results indicate that as p increases, the FGMs structure 
transitions from elastic (Case A) to partial plastic deformation (Case B). 
Specifically, at p = 150 MPa and p = 180 MPa, the radial displacement 
values are ρ1 = 0.6259 m and 0.7012 m, respectively. Further increases 
in internal pressure result in the FGMs structure entering a state of full 
plastic deformation, which is corroborated by the observations in Fig. 6
(a).

5.3. Effect of elastic modulus

Herein, one considers the influence of elastic modulus on the 
displacement and stresses distributions.

Fig. 7 shows the elastic modulus E1 influence on the deformation 
behavior, where Y0 = 200 MPa, E0 = 300 GPa, β = 0.2 and E1 = 150 GPa 
for Fig. 7(b)-(d). Fig. 7(a) illustrates the influence of p on the elasto-
plastic state diagram of the FGMs structure. It is observed that for p ∈ [0, 
300 MPa], and E1 ∈ [0, 300 GPa], the predominant state of FGMs 
structure is Case A. Specifically, for 0 ≤ p < 146 MPa, the shell exhibits 
Case A deformation. For 146 MPa ≤ p ≤ 191 MPa, it transitions to Case 
B, and for p > 191 MPa, the spherical shell experiences full plastic 
deformation. Fig. 7(b)-(d) illustrate the displacement, circumferential 
stress, and the difference between radial and circumferential stresses for 
E1 = 150 GPa. As indicated in Fig. 7(b), displacement increases with the 
increase of internal pressure p, with a transition from elastic to partial 

plastic deformations (Case B) occurring at p = 150 MPa and p = 180 
MPa. The radial coordinates ρ1 = 0.6259 m and 0.7012 m. As the in-
ternal pressure increases further, the FGMs spherical shell enters into 
full plastic deformation. This can also be verified from Fig. 7(a) further.

5.4. Effect of gradient parameter

Herein, one considers the effect of the gradient parameter on 
displacement and stresses distributions of the FGMs spherical shell.

Fig. 8 shows the influence of β on the deformation behavior where 
Y0 = 200 MPa, E0 = 300 GPa, v = 0.3, and p = 140 MPa for Fig. 8(b)-(d). 
When the β and p values fall within the region indicated by red points, 
the FGMs structure state is Case C. It can be seen from Fig. 8(a) that 
when p ∈ [0, 300 MPa], and β ∈[− 4, 8], a large portion of the points in 
Fig. 8(a) fall in the blue and green regions, implying that a large portion 
of the interior of the FGMs structure is in the deformed state of Cases A 
and B. When − 4 ≤ β < 3.2, the states transition from Cases A to B as the 
p increases. When 3.2 ≤ β < 4.1, the states transition from Cases A to B 
and D in turn as the p increases. When 4.1 ≤ β ≤ 8, the states transition 
from Cases A to C and D in turn. When p = 140 MPa, Fig. 8(b)-(d) show 
the displacement, the circumferential stress, and the difference between 
radial and circumferential stresses of the FGMs spherical shell. From 
Fig. 8(b), the displacement increases with increasing internal pressure p. 
It is clear that for β = 2, 4 and 7, the FGMs spherical shell exhibits a 
transition from elastic to partial plastic deformations (Cases B and C) at 
the respective radial coordinates of ρ1 = 0.6017 m, 0.6858 m and 
0.9559 m. With the progressive increase in load p, the structure 

Fig. 6. The influence of internal pressure on the elastoplastic behavior.
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ultimately enters a state of full plastic deformation. Furthermore, this 
change in stress distribution with increasing β results in a shift of the 
yield location from the inner to outer surfaces of the FGMs structure.

5.5. Deformation state determination and applications

Herein, the deformation state determination based on critical loads 
and practical implications of the results are given.

This study proposes a systematic analytical solution method for 
analyzing the deformation behavior of FGMs spherical shell under 
different internal pressure loads. Based on given material parameters 
and gradient parameters, by inputting the internal pressure p and 
comparing it with critical load values (initial yield critical load pe and 
fully plastic deformation critical load ps), the current deformation state 
of the structure can be precisely determined. When p < pe, the spherical 
shell remains in a purely elastic deformation state; when pe ≤ p < ps, the 
spherical shell undergoes partial plastic deformation; when p ≥ ps, the 
spherical shell enters a fully plastic deformation state. For each defor-
mation state, the corresponding analytical solutions for displacement 
and stress are derived. As shown in Fig. 9, the flowchart for deformation 
state judgment and displacement and stresses distributions analysis 
based on the analytical solutions is presented. The classification of four 
typical deformation states deepens the understanding of structural 
deformation and even damage mechanisms. The proposed method not 
only serves as a theoretical framework for predicting the mechanical 
behavior of FGMs spherical shell but also offers significant practical 
value in engineering applications, such as pressure vessel design. For 
instance, in pressure vessel optimization, the analytical solutions can 
guide the selection of material parameters and gradient designs, thereby 
enhancing the load-bearing capacity and operational lifespan of the 
vessels.

6. Conclusion

The exact solutions for the linear hardening elastoplastic model in 
FGMs spherical shell are studied using the small deformation theory in 
this paper. The following conclusions can be drawn: 

1. The critical pressure values between different deformation states 
containing pure elasticity, partial plasticity and fully plasticity are 
obtained for the FGMs spherical shell. Based on any given value 
combination of internal pressure, one can use the analytical 
expression for the critical load of Eqs. (33), (58) and (60) to deter-
mine the deformation state of the spherical shell.

2. The exact solutions of the stresses and displacement in the FGMs 
spherical shell are obtained. When the elastic state of the FGMs 
spherical shell is determined under a given load, the displacement 
and stresses distributions at each position of the spherical shell can 
be calculated from the exact expressions for different deformation 
states given analytically.

3. The study reveals that the deformation behavior of FGMs spherical 
shell is significantly influenced by internal pressure p, gradient 
parameter β, and elastic modulus E1. As the internal pressure in-
creases, the deformation state transitions progressively from elastic 
(Case A) to partial plasticity (Case B) and full plasticity (Case D), with 
the transition path varying across different ranges of β.

4. The elastic modulus E1 significantly affects the deformation state, 
with lower E1 values more likely to induce plastic deformation. The 
study also finds that as β increases, the yield location shifts gradually 
from the inner to the outer surface of the spherical shell, further 
highlighting the complex influence of gradient parameters on the 
mechanical behavior.

Furthermore, the research presented in this paper can be further 
expanded. Many FGMs exhibit nonlinear hardening behavior [62,63] 
due to their composite nature, and exploring additional nonlinear 

Fig. 7. The influence of elastic modulus E1 on the elastoplastic behavior.
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hardening models could provide further insights. The solutions derived 
here can also be extended to more complex loading conditions, such as 
combinations of internal and external pressures or displacement 
boundary conditions [10,11]. Additionally, one aims to investigate 
other laws distribution [28] of FGMs to validate and broaden the scope 
of our findings.
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