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A B S T R A C T

Rock materials exhibit various mechanical characteristics, and it is difficult to describe the strain–stress relation
with strong strain-softening behavior by a single constitutive law. In the present study, a long short term
memory (LSTM) deep learning method is proposed to predict the material’s deformation under different
loading conditions. Unlike the traditional analysis method focusing on the determination of effective tangent
stiffness tensor, the constructed LSTM-based procedure requires only the strain–stress values in certain cases
to predict the future mechanical behaviors, even for rock materials with strong strain-softening, indicating
that the loading history can be taken into account as time sequence data. In order to validate the accuracy,
two applications are provided with the established LSTM model: predicting the deformation of granite and
sandstone in conventional triaxial compression tests without introducing any elastoplastic parameters or
constitutive laws, where the dataset for training the LSTM model is collected alternatively from an analytical
micromechanical damage model and from laboratory experiments by considering a wide range of confining
pressure. Comparisons of accuracy and convergence rate with different neural network structures are also
carried out to check the best performance of the procedure. Implementation method of the trained LSTM
model in Finite Element program as a constitutive relation is also provided and applied to the simulation of
sandstone. Comparisons show that the LSTM-FEM method provides a good capacity to predict the mechanical
behavior of rocks.
1. Introduction

Rock materials exhibit complicated mechanical properties such as
the material hardening/softening, elastic stiffness degradation, and
irreversible deformation under compressive stresses due to the influ-
ence of the occurrence environment and its own structure (Walsh,
1980). Considering that rock strength and deformation failure laws
are crucial to the safety and stability of geotechnical engineering, a
large number of scholars have studied the strain–stress behavior of
rock materials, with the main research topics including the establish-
ment of rock constitutive models and numerical simulations. Significant
progress has been made in modeling plastic damage in quasi-brittle
materials such as rocks. Dragon and Mroz (1979), Hansen and Schreyer
(1994), De Sciarra (2012) established theoretical frameworks of plastic
damage model. Khan et al. (1991), Shao et al. (2006), Parisio et al.
(2015) established isotropic and anisotropic plastic damage models for
rock materials. At the same time, to better describe the influence of
anisotropic microcracks in brittle materials, Carol and Bazant (1997)
created a discrete plastic damage model based on microplane theory,
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while Zhu et al. (2010a,b) used discrete thermodynamic formulations.
In addition, in order to establish the physical relation between the two
micro physical processes of microcrack propagation and friction sliding
and the macro inelastic behavior, Andrieux and Bamberger (1986)
and Prat and Bažant (1997) developed a micromechanical model based
on linear fracture mechanics, whereas Horii and Nemat-Nasser (1983)
and Zhu and Shao (2015) developed a micromechanical model based
on homogenization theory. The usual procedure for establishing con-
stitutive models is to introduce additional elastoplastic parameters
or constitutive laws in the derivation and then, from the results of
experimental tests, to identify via a regression method, the parameters
of the model.

The strain–stress curve of rocks (such as granite, argillite and sand-
stone) in inelastic stage can be divided into the strain-hardening stage
before peak strength and the strain-softening at the post-peak stage. The
collapse will not immediately arrive after the peak point and makes an
important contribution of the load bearing ability of the material in
engineering. Therefore, the accurate understanding of strain-softening
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266-352X/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.compgeo.2022.105040
Received 17 June 2022; Received in revised form 21 August 2022; Accepted 14 Se
ptember 2022

http://www.elsevier.com/locate/compgeo
http://www.elsevier.com/locate/compgeo
mailto:chelseazhangjin@gmail.com
https://doi.org/10.1016/j.compgeo.2022.105040
https://doi.org/10.1016/j.compgeo.2022.105040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compgeo.2022.105040&domain=pdf


Computers and Geotechnics 152 (2022) 105040L.L. Shi et al.

B
d

stage is crucial for the description of the mechanical behavior. How-
ever, at the post-peak stage, the subsequent yield surface evolves with
plastic deformation, and the mechanical behavior is relatively complex,
which leads to difficulties with classical strength and constitutive the-
ories. Some analytical constitutive models, considering strain-softening
behavior of rocks, are carried out by additional assumptions and soft-
ening parameters (Tan et al., 2014; Souley et al., 2018; Jin et al.,
2020). The difference is that the softening parameters used of different
softening models are inconsistent. Tan et al. (2014) assumed that
uniaxial compressive strength of intact rock and parameter 𝑚𝑏 of H–

criterion were softening parameters of model. Souley et al. (2018)
escribed the strain-softening through parameter 𝑚𝑏 and 𝑠 of H–B

criterion. Jin et al. (2020) compared the rationality of the different
parameters for describing the softening characteristics of the strain-
softening model based on H–B criterion and found that the parameter
GSI was best suited for the description. Moreover, assuming a decrease
in cohesion with plastic strain and a constant friction angle, Pourhos-
seini and Shabanimashcool (2014) proposed a pre-peak elastic and
post-peak strain-softening constitutive model. Ma et al. (2014) set up
the non-simultaneous mobilization of cohesion and friction to capture
the post-peak strain-softening and ductile failure behavior of salt rocks.
Consequently, an analytical solution is not applicable for different types
of rocks due to the various characteristics.

To validate the rationality of the material constitutive model, it is
critical to establish a corresponding numerical approach. Numerical
integration algorithms are mainly divided into three categories: explicit
algorithm, implicit algorithm and semi-implicit algorithm. Explicit al-
gorithms were proposed by Zienkiewicz et al. (1969) and Nayak and
Zienkiewicz (1972), in which all quantities are updated at the start
of the time step and no iterative procedure is necessary. The implicit
closest point projection method (CPMM) was proposed by Simo and
Ortiz (1985) as a regression mapping tool for rate independent elasto-
plastic models. Later, Simo and Taylor (1985) discovered that when the
full Newton–Raphson algorithm is utilized, the CPPM with a constant
elastoplastic stiffness tensor offers asymptotic global quadratic conver-
gence rates. To improve the numerical computational efficiency, Peng
and Chen (2012) developed an implicit integration algorithm for an
isotropic elastoplastic model based on a general yielding criterion.
Finally, for a semi-implicit algorithm, Ghaei et al. (2010) implemented
a plastic model with two yield surfaces by not updating certain vari-
ables during the solution process. For plastic models with various yield
surfaces, a new semi-implicit algorithm was proposed by Areias et al.
(2012).

In recent years, with the growth of machine learning, artificial
intelligence methods with powerful nonlinear characterization capa-
bilities have attracted the attention of scholars worldwide. Various
artificial intelligence methods have been widely utilized in various
areas. The most popular deep learning application topics in geotech-
nical engineering, such as tunnel construction, slope displacement, and
landslide susceptibility, were summarized by Zhang et al. (2021a), and
it was demonstrated that the amount of research in this subject is
expanding rapidly. For instance, deep learning was utilized by Huang
et al. (2018) to locate the source of microseismic occurrences in under-
ground mines. Wu et al. (2020) used domain expertise to design a deep
learning model to track tunnel construction operations. To anticipate
the surface settlement during tunnel construction, Hu et al. (2019)
used three distinct artificial intelligence algorithms. Zhou et al. (2017)
used the RFR method to predict ground settlement caused by shield-
driven tunnel construction. Kardani et al. (2021) used a hybrid stacking
ensemble approach to forecast slope stability. Mahdevari et al. (2017)
created an artificial neural network (ANN) to anticipate and analyze
the stability of gate roadways based on roof displacements.

In addition, the mechanical behavior of materials can be well
predicted by deep learning methods. Deep learning methods, unlike
traditional constitutive methods, can directly obtain the neural net-
2

work model through the strain–stress data without any mechanical
assumptions, so as to determine the constitutive behavior of mate-
rials. Ghaboussi et al. (1991) first proposed the application of ANN
model to the mechanical behavior modeling of concrete, predicting
multiple load paths under biaxial loading. Furukawa and Yagawa
(1998) proposed an implicit viscoplastic constitutive model based on
neural network to study the inelastic behavior of materials. However,
the strain–stress relation is affected by the loading history, and the tra-
ditional neural network method cannot reflect the stress history-related
properties of materials due to the lack of connection between different
time steps, the accumulation of errors, and the high computational
cost (Zhang et al., 2021b).

To solve the above problems, recurrent neural network (RNN) with
node connections between hidden layers was proposed in the field of
artificial intelligence (Rumelhart et al., 1986). However, it has been
found that RNN suffers from long-term memory loss during training
when dealing with long-term history data. For this reason, Hochreiter
and Schmidhuber (1997) proposed long short term memory (LSTM),
which is a special type of RNN. Currently, LSTM is adopted in a
wide number of fields, such as neural machine translation (Sutskever
et al., 2014; Bahdanau et al., 2014), speech recognition (Graves et al.,
2013), and also vision-and-language applications like image and video
captioning (Vinyals et al., 2015; Xu et al., 2015; Baraldi et al., 2017).
In the field of engineering, LSTM has been applied to study soil mois-
ture (Fang et al., 2018), soil temperature (Li et al., 2020) and hydro-
mechanical coupling effects in porous media (Wang and Sun, 2018).
The thrust and cutterhead torque were predicted by a LSTM network
model based on data from the rising phase of the TBM tunneling cy-
cles (Li et al., 2021). Liu et al. (2021) developed a lithology prediction
model using improved LSTM neuron network methods. Zhang et al.
(2021c) compared the prediction accuracy and generalization ability
of five ML-based models based on the same set of sand test results, and
found that LSTM neural network and its variants are the most suitable
for developing constitutive models.

However, LSTM methods have rarely been used to study rock con-
stitutive behavior. Unlike traditional constitutive methods, the LSTM
approach, one of data-driven deep-learning methods, can directly ob-
tain the neural network model through the strain–stress data without
any mechanical or parameter assumptions, so as to determine the
constitutive behavior of materials and well describe the strain-softening
phenomenon. Considering the complex mathematical form and the
difficulty of parameter assumption of traditional constitutive methods
for rock materials with strong strain-softening characteristics and the
inappropriateness of general neural network models to deal with long-
term history data problems, this study uses numerical and experimental
strain–stress data for training and testing based on LSTM model in deep
learning.

The present paper is organized in the following way. In Section 2,
the traditional analytical constitutive model for rock materials and
the basic principle for LSTM network are briefly recalled, and two
methods are compared at the end. Section 3 is devoted to providing
two applications of the considered LSTM deep-learning model on the
mechanical behaviors of granite and sandstone in triaxial compression
tests, as well as the prediction of the mechanical response of granite
under loading and unloading conditions. In Section 4, the trained LSTM
model is implemented in FEM program as a constitutive law, and
applied to sandstone. Some concluding points are also provided in the
last section.

2. Brief description of constitutive relationship by analysis and
LSTM network methods

2.1. Traditional elastoplastic constitutive model of rock-like materials

This section begins with a brief recall of the constitutive model for
quasi-brittle materials. Actually, in brittle materials like concrete and

rocks, damage caused by microcrack growth (Shao et al., 2003; Zhu
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Fig. 1. Expansion of a typical RNN structure (Olah, 2015).
et al., 2008) and voids collapse (Dormieux et al., 2006; Shen and Shao,
2016; Zhang et al., 2017) is usually thought to be the primary cause
of inelastic deformation and failure. A damage parameter 𝜔 related
to material’s degradation is consequently introduced to represent the
growth and evolution of microscopic cracks, which is usually measured
by internal variable such as generalized plastic deformation 𝛾𝑝.

Through a series of derivation, the final constitutive elastoplastic
model considering the damage effect in strain-prescribed loading case
is usually taking the following form:

d𝜎𝑖𝑗 = 𝐶 𝑡𝑎𝑛
𝑖𝑗𝑘𝑙d𝜀𝑘𝑙 (1)

in which 𝐶 𝑡𝑎𝑛
𝑖𝑗𝑘𝑙 denotes the effective stiffness tensor to predict the stress

increment of damaged material, and 𝐶 𝑡𝑎𝑛
𝑖𝑗𝑘𝑙 = 𝐶0

𝑖𝑗𝑘𝑙 for the plastic yield
stress 𝑓 (𝜎𝑖𝑗 ) < 0. So that the corresponding stress increment d𝜎𝑖𝑗 is
obtained under the specified strain increment d𝜀𝑖𝑗 .

It can be obviously seen from Eq. (1) that the key point of the
analysis constitutive model in terms of elastoplastic assumption is to
determine the effective stiffness tensor 𝐶 𝑡𝑎𝑛

𝑖𝑗𝑘𝑙 beyond the elastic re-
gion. However, the strength and deformation rules of different rocks
could vary in a wide range, leading to the difficulty of describing
the strain–stress relation in a consistent form. In addition, experimen-
tal studies (Wawersik and Brace, 1971; Martin and Chandler, 1994)
have revealed various modes of microcrack initiation and propagation
in rock materials, and the involved damage parameter 𝜔 in mate-
rial property is consequently in different expressions according to the
mechanical behavior and failure modes.

As a result, to overcome the above difficulties, a LSTM procedure
of deep-leaning network will be used in this work to carry out a
widely applicable method to predict the deformation of rocks without
introducing the mentioned elastoplastic definitions and the values of
material properties.

2.2. Principle technique of LSTM network

Recurrent Neural Network (RNN) is a kind of neural network for
processing sequence data. Unlike general neural networks, RNN can
take into consideration of the history-related properties. The expansion
of a typical RNN structure by time sequence is shown in Fig. 1 (Olah,
2015), where 𝑋𝑖 denotes the input layer, 𝐴 represents the hidden layer,
and ℎ𝑖 is the output layer. It can be seen from the network structure
that the nodes between the hidden layers of the RNN are connected,
i.e., the input of the hidden layer contains not only the input layer at the
current moment, but also the output of the hidden layer at the previous
moment. Considering that the mechanical property of geomaterials is
related to the loading history, the RNN network is chosen in this study
due to its main feature of dealing with the time sequence problems.

However, gradient disappearance and explosion during RNN train-
ing cannot be ignored concerning the long sequence problems. Com-
pared with RNN, LSTM is able to better solve the long-term dependence
problem by a structure of the forget gate, input gate, output gate,
and memory cell (The expansion of a LSTM structure is displayed in
Fig. 2 (Olah, 2015)). Among them, the input gate is responsible for
processing the inputs at the current moment 𝑡, while the forget gate
decides whether to remember the intermediate state variables 𝐶
3

𝑡−1
Fig. 2. Expansion of a LSTM unit cell (Olah, 2015).

at the previous moment 𝑡 − 1. These gates collaborate to control its
ability to learn or forget information from temporal data. The key
component of LSTM network is the memory cell, whose function is
to make the procedure freely choose what to store at each time step,
and the transmission process is similar to a conveyor belt. In addition
to the outputs 𝑥𝑡 of the input layer at the current moment and the
output ℎ𝑡−1 of the hidden layer at the previous moment, an obvious
difference of LSTM network are the input components, comparing to
RNN hidden layer, including also the intermediate state variables 𝐶𝑡−1
of the previous time step.

In the following part, we will briefly recall the basic principle
technique of a typical LSTM network. The forget gate 𝑓 at 𝑡 moment is
expressed in the form below:

𝑓𝑡 = 𝜎(𝑊𝑓ℎ𝑡−1 + 𝑈𝑓𝑥𝑡 + 𝑏𝑓 ) (2)

with 𝑓𝑡 being the output of the forget gate at 𝑡 step. 𝑈𝑓 and 𝑊𝑓 denote
respectively the weight of input data and the shared recurrent weights
of the recurrent data for the forget gate. And 𝑏𝑓 is the corresponding
bias for the forget gate. 𝜎(∗) represents the sigmoid activation function,
defined by 𝜎(∗) = 1∕(1 + 𝑒−∗).

The input gate 𝑖 at 𝑡 step reads:

𝑖𝑡 = 𝜎(𝑊𝑖ℎ𝑡−1 + 𝑈𝑖𝑥𝑡 + 𝑏𝑖) (3)

where 𝑖𝑡 is the proportion of the current input that can be saved to the
cell memory. Similarly, 𝑊𝑖 and 𝑈𝑖 are the weights, and 𝑏𝑖 represents
the corresponding bias for the input gate.

The current updated intermediate state variable 𝐶𝑡 is defined by the
following equation:

𝐶𝑡 = 𝐶𝑡−1 ⊙ 𝑓𝑡 + 𝑖𝑡 ⊙ 𝐶𝑡 (4)

with ⊙ representing the Hadamard product, and 𝐶𝑡 being the candidate
value for cell status

𝐶𝑡 = tanh(𝑊𝐶ℎ𝑡−1 + 𝑈𝐶𝑥𝑡 + 𝑏𝐶 ) (5)

where 𝑊𝐶 and 𝑈𝐶 are the weight of cell status, and 𝑏𝐶 is the bias for
the input unit. 𝑡𝑎𝑛ℎ(∗) represents the activation function, defined as
𝑡𝑎𝑛ℎ(∗) = (𝑒∗ + 𝑒−∗)∕(𝑒∗ − 𝑒−∗).

The output gate 𝑜 is defined by the following equation:

𝑜 = 𝜎(𝑊 ℎ + 𝑈 𝑥 + 𝑏 ) (6)
𝑡 𝑜 𝑡−1 𝑜 𝑡 𝑜
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Fig. 3. Multi-layer LSTM neural network topology.
where 𝑜𝑡 is the output of the current output gate, and ℎ𝑡 denotes the
output data of the LSTM cell

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡) (7)

𝑊𝑜 and 𝑈𝑜 are the weight of the output gate, and 𝑏𝑓 is the bias of the
output gate.

In fact, the process of LSTM network training is to determine the
model parameters 𝑊 , 𝑈 and 𝑏, providing a best solution of the final
results.

2.3. Application of the LSTM deep-learning method in predicting the defor-
mation of rock in conventional triaxial compression tests

In the conventional triaxial compression experiment, one has the
following relations for the stress and strain states of the test sample:

𝜀𝑖𝑗 = 𝜎𝑖𝑗 = 0 for 𝑖 ≠ 𝑗 (8)

and the lateral strain and stress components

𝜀2 = 𝜀3, 𝜎2 = 𝜎3 (9)

The deviatoric stress can be calculated by the equation below

𝑞 = 𝜎1 − 𝜎3 (10)

Considering the strain-prescribed loading case (the most common
loading mode to obtain the post-peak behavior of rock), the lateral
pressure is maintained constant, and the axial strain 𝜀1 is increased
quasi-statically. Consequently, the determination of the constitutive
behavior of rock materials by the LSTM deep-learning methods can
be transformed into predicting the current deviatoric stress 𝑞𝑡, lateral
strain 𝜀𝑡3 and volumetric strain 𝜀𝑡𝑣, with the input data of deviatoric
stress 𝑞𝑡−1, lateral strain 𝜀𝑡−13 and volumetric strain 𝜀𝑡−1𝑣 at the previous
moment and the axial strain 𝜀𝑡1 and lateral stress 𝜎𝑡3 at the current
moment. The neural network of deep learning is usually composed of
input layer, hidden layer and output layer. Different from the network
topology of ANN, LSTM has circular connection in the hidden state
(see Fig. 3), which ensures that sequence information is captured in
4

the inputs.
Fig. 4. Architecture of the LSTM deep-learning network.

Actually, we can modify the structure of the network, such as
changing the number of layers and neurons of each hidden layer, to
obtain the best prediction accuracy, according to the complexity of
considered problem. Concerning the conventional triaxial compression
tests, LSTM network is adopted as the hidden layer in this paper. As
mentioned in the previous part, there are five input parameters in
the input layer, including the volumetric strain 𝜀𝑡−1𝑣 , deviatoric stress
𝑞𝑡−1 and lateral strain 𝜀𝑡−13 at the previous time and the axial strain
𝜀𝑡1 and lateral stress 𝜎𝑡3 at the current time. There are three output
parameters in the output layer, involving the current volumetric strain
𝜀𝑡 , deviatoric stress 𝑞𝑡 and lateral strain 𝜀𝑡 . Fig. 4 displays a generally
𝑣 3
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adopted LSTM network structure, in which the LSTM hidden layer can
be reconstructed according to different problems.

The training process of neural network mainly includes forward
propagation, back propagation and iterative updating of model param-
eters. At the beginning of training, the model parameters are generally
chosen as random values, so the prediction results obtained by forward
propagation are necessarily unreliable. The error between the predicted
value and the target value need to be evaluated by a loss function. In
this study, the mean square error (MSE) is chosen as the loss function
to estimate the accuracy:

𝑀𝑆𝐸 =
∑𝑛

𝑖=1(𝑓 (𝑥) − 𝑦𝑖)2

𝑛
(11)

here 𝑓 (𝑥) denotes the predicted value, 𝑦𝑖 is the true value and 𝑛 is
he number of samples. A smaller value of MSE indicates the more
ccurate prediction by the constructed model. Therefore, the process of
odel training is to determine the model parameters in nature, which
inimize the loss function.

To determine the corresponding network parameters, conventional
eural networks typically minimize the loss function by using an op-
imization algorithm. Optimization algorithms commonly include the
radient descent algorithm and the evolutionary one. Considering the
omputational cost, Adam optimizer (adaptive moment estimation al-
orithm) based on a gradient descent algorithm, which was firstly
roposed by Kingma and Ba (2014), is accepted to train the model in
his paper. Unlike the classical gradient descent method, Adam designs
ndependent adaptive learning rates for different parameters by cal-
ulating the first-order moment estimation and second-order moment
stimation of the gradient, and usually has less parameter adjustment.

In order to evaluate the performance of the proposed LSTM network
rogram, the coefficient of determination (𝑅2) is used as the evaluation
ndex:

2 = 1 −
∑𝑛

𝑖=1(𝑓 (𝑥) − 𝑦𝑖)2
∑𝑛

𝑖=1(�̄� − 𝑦𝑖)2
(12)

in which 𝑓 (𝑥) is the predicted value, 𝑦𝑖 is the true value, �̄� represents
the average of true values, and 𝑛 is the number of samples.

In Section 2.1, the framework of traditional constitutive method
s briefly reviewed. The determination of the effective stiffness tensor
𝑡𝑎𝑛
𝑖𝑗𝑘𝑙 is an important part in the derivation, which varies during the load
rocess and leads to the inelastic behavior of rocks. Besides, additional
ssumption or function to describe the material deformation effect also
eed to be provided, which will result in burdensome derivation and
omputation. The implementation of LSTM method is introduced in
ections 2.2 and 2.3. LSTM method, as a special type of RNN, has
ircular connection in the hidden layers, so it can reflect the stress
istory-related properties of materials. It can be seen that the LSTM
ethod only needs to be trained by available data, while the traditional

onstitutive method needs to define the parameters and introduce the
onstitutive laws, which is consequently more complicated.

. Predictions of strong strain-softening behaviors of rocks by the
STM deep-learning procedure

In this section, the constructed LSTM deep-learning procedure will
e applied to predict the deformation of granite where the dataset for
raining the LSTM model is collected from an analytical micromechani-
al damage law in Section 3.1, and that of sandstone where the dataset
s obtained from original laboratory conventional triaxial compression
ests in Section 3.2. In order to validate the accuracy, no elastoplastic
arameter of the material is introduced for model training, and a wide
ange of confining pressure is considered.
5

m

Fig. 5. Training process of LSTM model with different structure.

3.1. Mechanical behaviors prediction of granite with training data from
analytical model

The training data for LSTM network method is crucial to its predic-
tion accuracy. Compared to experimental tests, the analytical constitu-
tive model can provide enough data for better training the proposed
procedure. And the validation will take into account a wide range
of different loading condition (confining pressure). Consequently, a
micromechanical-based constitutive damage model (Zhu et al., 2015)
to describe the mechanical properties of Beishan granite is adopted to
produce the dataset in this subsection.

Taking into account of the brittle fracture of granite, a damage
parameter 𝜔 related to the crack density is introduced to describe the
material degradation in Zhu et al. (2015). The final friction-damage
strength criterion is taking the following form:

𝑓𝑠 = 𝑞 −
√

3
2
𝜂𝑝 −

√

6𝑅(𝜔𝑐 )𝜒 ≤ 0 (13)

where 𝑝 and 𝑞 are respectively the mean and deviatoric stresses. The
erivation and detailed expressions of this model are provided in Ap-
endix. In order to collect the dataset, the above analytical model can
e illustrated numerically by an iteration procedure, which contains
lastic prediction and inelastic correction phases at each increment.
ith the imposed strain increment, the stress increment can be cor-

espondingly calculated. It is referred to Yuan et al. (2020) for the
teration program.

The deformation under monotonic load, one of the most impor-
ant characteristics of rocks in engineering, is investigated by LSTM

ethod in this study. The strategy of the data preparation are arranged
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as follows. The model contains five parameters: elastic modulus 𝐸𝑚,
Poisson’s ratio 𝜇𝑚, friction coefficient 𝜂 of crack surface, the maximum
alue of damage evolution resistance 𝑅(𝜔𝑐 ), and the critical value of
amage variable 𝜔𝑐 . The parameters are determined by Zhu et al.
2015), so that 𝐸𝑚 = 70 GPa, 𝜇𝑚 = 0.15, 𝜂 = 1.80, 𝑅(𝜔𝑐 ) = 9.26 ×
10−3 MPa, 𝜔𝑐 = 7.0. Through iterative procedure, 1000 strain–stress
pairs under each confining pressure are derived as the dataset of LSTM
model. Among them, 16000 strain–stress pairs with confining pressures
of 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 and 30 MPa are
used as the training set of LSTM model, and 2000 strain–stress pairs
with confining pressures of 17 and 19 MPa will be predicted by the
trained deap-learning procedure and compared to the analytical results,
aiming at validating the prediction accuracy.

In addition, considering that the input and output data of the
model have different units and might vary greatly in the value, direct
application of original data will lead to inaccuracy problem caused by
the dominance of large dimension values. Since the gradient descent
optimization is used in the model training, the dimensional difference
will lead to the decrease of the speed of updating model parameters
in each iteration. In order to avoid the above problems, we normalize
the input and output data in the preprocessing stage and scale them
linearly to the interval of [0,1] by

𝑥∗ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
(14)

where 𝑥 represents the original values of the input and output data,
𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximum values, and 𝑥∗ is the
objective normalized value which can be used for the training process.

Following the above steps, the proposed LSTM network model
has been trained by considering different number of hidden layers
and neurons. By analyzing the prediction accuracy and computational
cost with different structures, the best solution can be determined.
The evaluation of error parameter MSE during the training process is
provided in Fig. 5. 1 hidden layer with 20, 40, 60, 80, 100 and 120
neurons have been tried as shown in Fig. 5(a). It can be seen the values
of MSE decrease quickly and are stable after 400 epoch of training.
The comparisons of the MSE variation during train process between
different LSTM layers with 100 neurons are also carried out in Fig. 5(b).

For the sake of clarity, the final value of MSE at the last epoch
and calculation efficiency of different LSTM structure are illustrated in
Fig. 6. It can be concluded in Fig. 6(a) that except for a layer with 20
neurons, the final value of MSE do not have remarkable changes with
the increase of the number of neurons, where it takes the minimum
value with 100 neurons. And the computation time of each epoch has
very few difference. Besides, as shown in Fig. 6(b), the errors are all
acceptable for 1, 2 and 3 layers. Consequently, the LSTM model with 2
hidden layers of 100 neurons is adopted for the training and prediction
steps. After 2000 epoch, the loss and accuracy of the test data are

−5
6

2.79 × 10 and 0.99.
Fig. 7 shows the comparison between the predicted mechanical
behavior by the proposed LSTM procedure and the data obtained by the
analysis model in triaxial compression tests with confining pressure of
17 and 19 MPa. The cycle points represent the strain–stress data from
the micromechanical damage constitutive model proposed in Zhu et al.
(2015). The red, blue and gray lines denote the variation of deviatoric
stress corresponding to the axial strain (𝑞 − 𝜀1), lateral strain (𝑞 − 𝜀3)
and volumetric strain (𝑞 − 𝜀𝑉 ), respectively.

In general, it can be obviously seen that the predicted values have
good agreement to the true values, and the trained model well

eflects the strong strain-softening characteristics of granite. In Fig. 7,
rediction results are obtained by using the existing data as input (dash
ine), the accuracy of model prediction cannot be verified for unknown
eformation. Therefore, the test procedure should be adjusted. Except
or the first set of sequence inputs where analytical results are still used,
he axial strain 𝜀𝑡1 and lateral stress 𝜎𝑡3 at the current moment deter-
ined are retained for the other sequence inputs, and the volumetric

train 𝜀𝑡−1𝑣 , deviatoric stress 𝑞𝑡−1 and lateral strain 𝜀𝑡−13 at the previous
moment are replaced with the predicted results at previous moment.
Comparisons between the predicted values of the strain–stress curve
after being adjusted (solid line) and the analytical results are displayed
in Fig. 7. It can be seen that the trained model after adjusted can also
provide accurate predictions of mechanical behaviors for granite.

In addition, in the analytical constitutive law, the damage variable
𝜔 related to material degradation is generally introduced to describe
the evolution of microstructure during the loading process, for which
the decrease of the effective Young’s modulus 𝐸 is considered as the
macroscopic consequence that can be observed in experiments (Liu
and Dai, 2018). In order to verify whether the results by the LSTM
method can reflect the variation of internal properties of rocks, that
is, to explore whether the results of the LSTM model are in accordance
with those of the analytical model, Fig. 8 illustrates the evolution of
predicted tangent modulus 𝐸 (blue line) and the damage variable 𝜔
(red dash line) by the analytical constitutive model with the confining
pressure of 17 MPa. Although no mechanical property parameters are
introduced in training the LSTM deep-learning model, the predicted
zero point of 𝐸 is close to the abrupt position of 𝜔, and to the peak
point of the strain–stress curve, indicating that the obtained results by
LSTM method can capture the main features of mechanical properties
and material degradation for rock materials.

To verify the accuracy of the proposed LSTM model in predicting
rock deformation under different loading paths, the application of pro-
posed LSTM approach in simulating the behaviors under loading and
unloading conditions is also carried out. Similarly, through the iterative
process, the loading and unloading process of granite is simulated
once before and after the peak strength. The same set of database is
accepted for training the model with 3 hidden layer of 140 neurons and
predicting the strain–stress values with confining pressure of 17 MPa.
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Fig. 7. Comparisons between the predicted values by unadjusted and adjusted LSTM model and data obtained by the analysis model under different confining pressures.
Fig. 8. Comparisons between the evolution of damage parameter and degradation of material by analytical results and LSTM predictions.
fter 1000 epoch, the 𝑅2 of the test set reaches 0.9997. Fig. 9 provides
he comparisons between the LSTM predictions (solid line) and the data
cycle points) obtained by the analysis mode with 𝜎3 = 17 MPa under
oading and unloading conditions (gray arrows). It can be seen that
STM method can predict not only the mechanical behavior of rock
nder monotonic loading path, but also the cyclic response of rock
nder complex loading history.

.2. Mechanical behaviors prediction of red sandstone with training data
rom laboratory experimental tests

In the previous subsection, the proposed LSTM procedure has been
ested with dataset from analytical solution, and exhibits a good predic-
ion ability. In order to verify the accuracy on the constitutive behavior
f unknown materials, the proposed deep-learning network will be
rained with experimental data of red sandstone in conventional triaxial
ompression tests in this part. The laboratory experiments are carried
ut on Rock multi-field test system, using standard dry red sandstone
ith the diameter of 50 mm and height of 100 mm (see Fig. 10).

The triaxial compression test is performed with 7 confining pressure
evels of 0, 5, 10, 15, 20, 25 and 30 MPa. The experimental results are
isplayed in Fig. 11. The red line represents the curve of 𝑞−𝜀1, and the
lue line stands for that of 𝑞−𝜀3. It can be seen that the reduction of the
urve is relatively slow compared to that of granite. Besides, in Fig. 11,
he strain-softening phenomenon phase is obvious for 0 MPa confining
ressure. But with the increase of confining pressure, the softening of
he strain–stress curve is not clear, but still can be observed, which
7

Fig. 9. Comparisons between the numerical results and the LSTM predictions under
loading and unloading conditions.

is due to the brittle–ductile transition of sandstone under confining
pressure.

A total of 30874 strain–stress pairs are obtained from the triaxial
compression test. 25739 experimental results of 0, 5, 10, 15, 25 and

30 MPa confining pressure are accepted as training dataset for the
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Fig. 10. Rock multi-field test system (left) and red sandstone specimens (right).
Fig. 11. Strain–stress curves of red sandstone by triaxial compression tests with respect
to different confining pressures.

LSTM network with 2 hidden layers of 140 neurons. And 5135 strain–
stress data with 20 MPa confining pressure are used as test set to verify
the prediction ability of the proposed LSTM-based model. After 100
epoch, the 𝑅2 of the test set reaches 0.9205. Fig. 12 shows the com-
parisons between the LSTM predictions (solid line) and experimental
results (cycle points) of red sandstone with 𝜎3 = 20 MPa. It can be
seen that, even the material’s properties are unknown and the strain-
softening phase is not that remarked compared with that of Beishan
granite in Section 3.1, the LSTM-based model can also predict the defor-
mation of rock materials with different natures and the brittle–ductile
transition can also be predicted through limited experimental data.

4. Method of implementation of LSTM deep-learning model in
finite element analysis

4.1. Main steps to implement the trained LSTM model in FEM program

In this section, the proposed LSTM deep-learning network will be
implemented in 3 dimensional FEM framework written in Julia (Bezan-
son et al., 2017) programming language, which could be applied in
structure computations. In the FEM program, quadrilateral isopara-
metric elements are used for spatial discretization, which makes the
weak form of governing equations of nonlinear solid mechanics be
written as a sum over the element domains (Zienkiewicz and Taylor,
2005). Applying Galerkin method (Galerkin, 1915; Hughes, 2012),
displacement 𝒖 and its virtual form 𝛿𝒖 in weak form are replaced by
their polynomial approximations. Then the derived system of nonlinear
equations is solved by Newton’s method (Burden et al., 2015). The
inserted trained model plays a similar role as the constitutive law in
FEM program. The key point of the program is to update the new stress
tensor 𝝈𝑡+𝛥𝑡 and Jacobian matrix 𝜕𝛥𝝈∕𝜕𝛥𝜺 with the known current
stress 𝝈𝑡, strain 𝜺𝑡, and the prescribed strain increment d𝜺.
8

In LSTM neural network, the input file is sequence data. For exam-
ple, the input is composed of the strain–stress results of previous and
current time steps together. But when solving the stress and Jacobian
matrix at a certain time step, the finite element program only provides
the stress 𝝈 and strain 𝜺 of the previous moment and the strain
increment d𝜺 of the current moment to the constitutive program, which
do not constitute the required sequence data for the model. Therefore,
in order to obtain the initial sequence data required for the LSTM
neural network model, the solution process of the constitutive program
is divided into two parts: the imposed elastic stage at beginning and the
trained LSTM neural network model obtained in this study. In the initial
stage, the constitutive program firstly executes the isotropic linear
elastic constitutive relation and saves the results until the sequence
data reaches the required length, and then enters into the LSTM neural
network model for computation. In addition, aiming at storing the
strain–stress data at the previous moment and forming the sequence
data input required for the LSTM neural network model, the state
variable (𝑺𝑻𝑨𝑻𝑬𝑽 ) is used for data storage. containing the volumetric
strain 𝜀𝑡−1𝑣 , deviatoric stress 𝑞𝑡−1 and lateral strain 𝜀𝑡−13 at the previous
moment and the axial strain 𝜀𝑡1 and lateral stress 𝜎𝑡3 at the current
moment in chronological order.

The dimension of the time-sequence input data is imposed as 50, so
that 𝑺𝑻𝑨𝑻𝑬𝑽 (1) to 𝑺𝑻𝑨𝑻𝑬𝑽 (250) will be stored in the computation.
In order to ensure that the sequence data is stored, 𝑺𝑻𝑨𝑻𝑬𝑽 (251) is
set to count the execution times of the constitutive program. The main
process of LSTM network implemented in FEM program and the specific
storage and update process of 𝑺𝑻𝑨𝑻𝑬𝑽 are shown in Fig. 13.

The artificial neural network model trained by experimental results
is implemented in FEM consisting of two LSTM layers, a fully connected
layer and a Relu activation layer. If the number of model features and
target values are noted as 𝑗 and 𝑘, the first and second LSTM layers have
𝑚 and 𝑛 neurons, and the number of neurons in the fully connected
layer is 𝑘, which is the same as the target values, so that there are
(4(𝑚2 + 𝑗𝑚 + 𝑚) + 4(𝑛2 + 𝑚𝑛 + 𝑛) + (𝑛𝑘 + 𝑘)) internal parameters in
the model. In this part, the number of feature and target values of
the artificial neural network model trained are imposed as 5 and 3.
And there are 140 neurons in the two LSTM layers and 3 neurons in
the fully connected layer. Therefore, the model has 239543 internal
parameters in total. Inspired from the basic principle technique of
LSTM, the training process of each layer for the present application is
provided in the following equations.

The first LSTM layer:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑓 (1)
𝑡 = 𝜎(𝑊 (1)

𝑓 ℎ(1)𝑡−1 + 𝑈 (1)
𝑓 𝑥𝑡 + 𝑏(1)𝑓 )

𝑖(1)𝑡 = 𝜎(𝑊 (1)
𝑖 ℎ(1)𝑡−1 + 𝑈 (1)

𝑖 𝑥𝑡 + 𝑏(1)𝑖 )

𝐶𝑡
(1)

= tanh(𝑊 (1)
𝐶 ℎ(1)𝑡−1 + 𝑈 (1)

𝐶 𝑥𝑡 + 𝑏(1)𝐶 )

𝐶 (1)
𝑡 = 𝐶 (1)

𝑡−1 ⊙ 𝑓 (1)
𝑡 + 𝑖(1)𝑡 ⊙ 𝐶𝑡

(1)

𝑜(1)𝑡 = 𝜎(𝑊 (1)
𝑜 ℎ(1)𝑡−1 + 𝑈 (1)

𝑜 𝑥𝑡 + 𝑏(1)𝑜 )

ℎ(1)𝑡 = 𝑜(1)𝑡 ⊙ tanh(𝐶 (1)
𝑡 )

(15)

where 𝑥 is the input at the current moment.
𝑡
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Fig. 12. Comparisons between the LSTM predictions and experimental results of red sandstone in triaxial compression test with 𝜎3 = 20 MPa.
The second LSTM layer:

𝑓 (2)
𝑡 = 𝜎(𝑊 (2)

𝑓 ℎ(2)𝑡−1 + 𝑈 (2)
𝑓 ℎ(1)𝑡 + 𝑏(2)𝑓 )

𝑖(2)𝑡 = 𝜎(𝑊 (2)
𝑖 ℎ(2)𝑡−1 + 𝑈 (2)

𝑖 ℎ(1)𝑡 + 𝑏(2)𝑖 )

𝐶𝑡
(2)

= tanh(𝑊 (2)
𝐶 ℎ(2)𝑡−1 + 𝑈 (2)

𝐶 ℎ(1)𝑡 + 𝑏(2)𝐶 )

𝐶 (2)
𝑡 = 𝐶 (2)

𝑡−1 ⊙ 𝑓 (2)
𝑡 + 𝑖(2)𝑡 ⊙ 𝐶𝑡

(2)

𝑜(2)𝑡 = 𝜎(𝑊 (2)
𝑜 ℎ(2)𝑡−1 + 𝑈 (2)

𝑜 ℎ(1)𝑡 + 𝑏(2)𝑜 )

ℎ(2)𝑡 = 𝑜(2)𝑡 ⊙ tanh(𝐶 (2)
𝑡 )

(16)

where ℎ(1)𝑡 is the output of first LSTM layer.
The fully connected layer is defined by:

𝑠 = 𝑊 ℎ(2)𝑡 + 𝑏 (17)

where ℎ(2)𝑡 is the output of second LSTM layer.
The Relu activation layer reads:

𝑓 (𝑠) = 𝑚𝑎𝑥(0, 𝑠) (18)

where 𝑠 is the output of the fully connected layer.
To implement the trained LSTM model in the constitutive program,

the internal parameters of the trained network are stored and extracted
by a Python program. Since the model contains a large number of
parameters, the calculation of each network layer is implemented in
the constitutive program by means of loop for the sake of simplicity.
The implementation process of the constitutive program is shown in
Algorithm 1.

4.2. Application to red sandstone

The above constitutive program is embedded into the FEM program
to simulate the mechanical behaviors of red sandstone in the con-
9

ventional triaxial compression tests with the same experimental data.
Algorithm 1: Rock material constitutive program based on
LSTM deep-learning network

Input: 𝜺𝑡,𝝈𝑡,d𝜺𝑡+1,𝑺𝑻𝑨𝑻𝑬𝑽 𝑡

Output: 𝝈𝑡+1,C𝑡+1,d𝜺𝑡+1,𝑺𝑻𝑨𝑻𝑬𝑽 𝑡+1

1 𝑺𝑻𝑨𝑻𝑬𝑽 𝑡+1(249) = 𝜀𝑡1 + d𝜀𝑡+11 ;
2 𝑺𝑻𝑨𝑻𝑬𝑽 𝑡+1(250) = 𝜎𝑡3;
3 if 𝑺𝑻𝑨𝑻𝑬𝑽 𝑡+1(251) < 𝑚 then
4 Isotropic linear elastic constitutive model;
5 C𝑡+1 = C𝑡+1

0 ;
6 𝝈𝑡+1 = 𝝈𝑡 + C𝑡+1 ∶d𝜺𝑡+1;
7 else
8 LSTM neural network model;
9 for 𝑗 = 1, 2, 3, ..., 50 do
10 The output of the first LSTM layer: ℎ1;
11 The output of the second LSTM layer: ℎ2;
12 for 𝑘 = 1, 2, 3 do
13 The fully connected layer and the Relu activation layer:

s;
14 𝜎𝑡+11 = 𝒔(2) × 𝒓𝒂𝒏𝒈𝒆𝑬𝒏𝒕𝒓𝒊𝒆𝒔(2) +𝒎𝒊𝒏𝑬𝒏𝒕𝒓𝒊𝒆𝒔(2);
15 d𝜀𝑡+12 = 𝒔(3) × 𝒓𝒂𝒏𝒈𝒆𝑬𝒏𝒕𝒓𝒊𝒆𝒔(3) +𝒎𝒊𝒏𝑬𝒏𝒕𝒓𝒊𝒆𝒔(3);
16 d𝜀𝑡+12 = 𝒔(3) × 𝒓𝒂𝒏𝒈𝒆𝑬𝒏𝒕𝒓𝒊𝒆𝒔(3) +𝒎𝒊𝒏𝑬𝒏𝒕𝒓𝒊𝒆𝒔(3);
17 C𝑡+1 = C𝑡+1

0 ;
18 for 𝑖 = 1, 2, 3, ..., 245 do
19 𝑺𝑻𝑨𝑻𝑬𝑽 update;
20 𝑺𝑻𝑨𝑻𝑬𝑽 𝑡+1(𝑖) = 𝑺𝑻𝑨𝑻𝑬𝑽 𝑡(𝑖 + 5);
21 𝑺𝑻𝑨𝑻𝑬𝑽 𝑡+1(246) = 𝜀𝑡1 + d𝜀𝑡+11 + 𝜀𝑡2 + d𝜀𝑡+12 + 𝜀𝑡3 + d𝜀𝑡+13 ;
22 𝑺𝑻𝑨𝑻𝑬𝑽 𝑡+1(247) = 𝜎𝑡+11 − 𝜎𝑡+13 ;
23 𝑺𝑻𝑨𝑻𝑬𝑽 𝑡+1(248) = 𝜀𝑡3 + d𝜀𝑡+13 ;
24 𝑺𝑻𝑨𝑻𝑬𝑽 𝑡+1(251) = 𝑺𝑻𝑨𝑻𝑬𝑽 𝑡(251) + 1;
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Fig. 13. Flowchart of implementation of LSTM network in FEM program.

Consequently, the parameters of trained LSTM model in Section 3.2 are
adopted to predict the deformation of a single Gaussian point under the
confining pressure of 20 MPa. The total axial strain is set as 0.02, which
is equally divided into 0.02

d𝜀1
pieces referring to the increment size d𝜀1.

Computations with respect to different incremental size of the axial
strain are carried out by considering 500, 1000, 2500, and 5000 steps
(see Fig. 14). The experimental data are represented by cycle points,
and the solid lines stand for the numerical simulations by LSTM-FEM
program. It can be seen that for all the computations, the obtained
results by LSTM-FEM program are acceptable before the peak stress. But
the strain–stress curve cannot be accurately predicted if the incremental
size is too large. As shown in Fig. 14(d), when the magnitude of strain
increment is set as 4 × 10−6 with 5000 incremental steps, the obtained
10
Table 1
Comparisons of the predicted results by LSTM-FEM program to experimental results
with respect to different incremental steps.

No. Increment steps d𝜀1 MSE 𝑅2

1 500 4 × 10−5 94.5586 0.9538
2 1000 2 × 10−5 30.0291 0.9853
3 2500 8 × 10−6 8.9733 0.9956
4 5000 4 × 10−6 9.4021 0.9954

Table 2
Comparisons of the predicted results by LSTM-FEM program to that of LSTM model
with respect to different incremental steps.

No. Increment steps d𝜀1 MSE 𝑅2

1 500 4 × 10−5 156.7304 0.9169
2 1000 2 × 10−5 54.6694 0.9710
3 2500 8 × 10−6 8.7939 0.9953
4 5000 4 × 10−6 0.5817 0.9997

strain–stress curve is in good agreement with the experimental results.
And magnitude of strain increment in each time step of the artificial
neural network model training set used in the constitutive program is
imposed as 10−8, which shows that when the strain increment is closer
to the order of magnitude of the model training set, the model can
better simulate the main mechanical behavior of rock.

The loss and accuracy of the predicted values by LSTM-FEM nu-
merical simulations compared to experimental results with respect to
different incremental sizes are shown in Table 1, and those compared to
LSTM predictions are provided in Table 2. It can be concluded that the
accuracy is obviously improved with the increase of incremental steps,
and the numerical predictions by LSTM-FEM program can captures the
main deformation features of rocks.

5. Conclusions

In this study, a deep-learning network has been proposed to predict
the constitutive relations of rock materials, especially for the strain-
softening effects. Considering that the strain–stress behavior of rocks
is affected by the loading history, the LSTM method is adopted to
calculate the deformation in conventional triaxial compression tests.
The volumetric strain 𝜀𝑡−1𝑣 , deviatoric stress 𝑞𝑡−1 and lateral strain 𝜀𝑡−13
at the previous moment and the axial strain 𝜀𝑡1 and lateral stress 𝜎𝑡3 at
the current moment are taken as inputs, and the volumetric strain 𝜀𝑡𝑣,
deviatoric stress 𝑞𝑡 and lateral strain 𝜀𝑡3 at the current moment are taken
as outputs to train the model. Compared with traditional methods, neu-
ral network method can accurately predict the mechanical properties
of materials, even with strong strain-softening characteristics, without
introducing any elastoplastic parameters or constitutive laws.

Two applications of the constructed LSTM model on the analytical
constitutive model of granite and experimental tests of sandstone have
been provided. The comparisons demonstrate that the LSTM-based
method can capture the main mechanical features of rocks, such as
strong strain-softening, even if the materials’ properties are unknown.
Besides, the materials’ degradation during loading process can also be
described by the LSTM model, indicating the evolution of material’s
nature. The application of proposed LSTM model in simulating the
behaviors under loading and unloading conditions has been also car-
ried out, which verifies the accuracy of the model in predicting rock
deformation under different loading paths. In the end, the constructed
LSTM model has been implemented in FEM program as a constitutive
program, and successfully applied to the prediction of the deformation
of sandstone.

In the out look, to expand the LSTM-FEM program to the structural
computation of common geotechnical constructions, such as under-
ground tunnel and slope, will be a challenging and practical task.
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Fig. 14. Numerical simulation by LSTM-FEM program of the mechanical behavior of red sandstone with confining pressure of 20 MPa
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ppendix. Brief recall of the micromechanical friction-damage
odel in Zhu et al. (2015)

The existence of microcracks leads to the discontinuity of displace-
ent field in rock. To describe the behaviors of rock, the total strain 𝜺

s divided into elastic and inelastic components:
𝑚 𝑐
11

= 𝜺 + 𝜺 (A.1)
nd the constitutive relation can be simply described by the generalized
ooke’s law:

= C𝑚 ∶ (𝜺 − 𝜺𝑐 ) (A.2)

where C𝑚 is the initial fourth-order stiffness tensor of materials.
Mohr–Coulomb yield criterion based on local stress is expressed as,

𝑓𝑠(𝝈𝑐 ) =∣∣ 𝒔𝑐 ∣∣ +𝜂𝑝𝑐 ⩽ 0 (A.3)

where 𝒔𝑐 is deviatoric stress of 𝝈𝑐 , defined by 𝒔𝑐 = K ∶ 𝝈𝑐 . And 𝑝𝑐

denotes mean stress of 𝝈𝑐 , defined by 𝑝𝑐 = tr𝝈𝑐∕3.
After a series of derivation, under conventional triaxial loading,

∣∣ 𝒔𝑐 ∣∣ and 𝑝𝑐 can be derived as,

∣∣ 𝒔𝑐 ∣∣= −
√

2
3
(𝜎1 − 𝜎3) −

2𝜇𝑚

𝜂2
𝛬𝑐

𝜔
(A.4)

𝑝𝑐 = 1
3
(𝜎1 + 2𝜎3) −

𝑘𝑚𝜂
𝜂1

𝛬𝑐

𝜔
(A.5)

in which 𝛬𝑐 represents cumulative inelastic variable, and 𝜂1 and 𝜂2 are
the constants only related to Poisson’s ratio 𝜇𝑚.

To simplify the equation, with 𝜒 = 𝑘𝑚𝜂2

2𝜂1
+ 𝜇𝑚

𝜂2
, the friction-damage

trength criterion can be changed to the form below:

𝑠 = −
√

2
3
(𝜎1 − 𝜎3) +

1
3
𝜂(𝜎1 + 2𝜎3) − 2𝜒 𝛬𝑐

𝜔
⩽ 0 (A.6)

The damage criterion 𝑓𝜔 = ( 𝑘
𝑚𝜂2

2𝜂1
+ 𝜇𝑚

𝜂2
)(𝛬

𝑐

𝜔 )2 − 𝑅(𝜔) = 0 is adopted
to obtain the relation:

𝛬𝑐
=

√

𝑅(𝜔) (A.7)

𝜔 𝜒
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With the pressure as positive, using Eq. (A.7) into Eq. (A.6), we
obtain:

𝑓𝑠 = 𝜎1 −

√

6 + 2𝜂
√

6 − 𝜂
𝜎3 −

6
√

𝑅(𝜔)𝜒
√

6 − 𝜂
⩽ 0 (A.8)

Considering that the mean stress is defined as 𝑝 = (𝜎1 + 2𝜎3)∕3,
and deviatoric stress is 𝑞 = 𝜎1 − 𝜎3. The final friction-damage strength
criterion is:

𝑓𝑠 = 𝑞 −
√

3
2
𝜂𝑝 −

√

6𝑅(𝜔𝑐 )𝜒 ≤ 0 (A.9)
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