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A B S T R A C T

This paper is devoted to the maximum bearing capacity of double-layer tubes subjected to monotonic and
cyclic loading, within the framework of static limit and shakedown analysis. The double-layer tube comprises
inner and outer layers made of different materials, both obeying the von Mises criterion. The effects of different
geometric dimensions (thickness and volume fraction) and material properties (elastic modulus, Poisson’s ratio,
and yield stress) on the effective mechanical behavior are studied analytically and numerically. The results
indicate that the bearing capacity of the double-layer tube under monotonic load reaches its maximum value
when both inner and outer layers reach their elastic or plastic limits simultaneously. The computation of
plastic and shakedown limits are presented, divided into different cases by considering the volume fraction of
the inner and outer layers. The double-layer structure under cyclic loads may fail due to fatigue and excessive
deformation mechanisms of the inner or outer layers at the first cycle. Only when both layers fail due to fatigue
simultaneously, the shakedown limit of the structure reaches its maximum value. Compared to a single-layer
tube, the long-term strength of the double-layer tube can be significantly improved by applying appropriate
geometric dimensions and materials in fabrication.
. Introduction

Single-layer tube is one of the typical structures in engineering,
hich is used in subterranean pipelines, pressure vessels and helically

einforced tubular structures. It is extensively utilized in chemical
anufacturing, mechanical engineering and other industries [1–3]. In

rder to improve the load bearing capacity of single-layer tube, many
esearchers select to increase the wall thickness or use higher strength
aterials. However, simply increasing the wall thickness and employ-

ng higher strength materials are not conducive to saving production
etals and controlling costs [4–6]. Moreover, the load bearing capacity
ill not be significantly improved with the continuously increase of

he outer radius, if the inner radius of the single-layer tube remains
onstant [7,8].

Therefore, one of the efficient ways to enhance the load bearing
apacity is to apply double-layer structures, in which the stresses will
e redistributed and different with those in single-layer tube [9–11],
eading to the improvement of performance. A double-layer tube is
abricated by assembling two single-layer tubes together. When the
ouble-layer tube structure is adopted, the inner layer can be made of
recious metal materials with high strength and corrosion resistance,
hile the outer layer can be made of ordinary metal materials with

∗ Corresponding author.
E-mail address: chelseazhangjin@163.com (J. Zhang).

sufficient strength and toughness [12–14]. The material with high
yield strength can also be used as the inner layer of the double-layer
tube, which can improve its load bearing capacity. Limit analysis and
shakedown problems of tubes have been extensively studied in the
literature, with most research focused on single-layer ones. However,
research on the limit and shakedown analysis of double-layer tubes
is not commonly considered, especially the influence of the geometric
dimensions and mechanical constants of the double-layer tube on the
plastic and shakedown limit [15–17]. This can lead to significant de-
viations when applied to engineering structures. Moreover, researches
[18,19] has shown that spherical shells or cylindrical structures un-
der cyclic loading can fail of fatigue or incremental collapse at the
first cycle due to different mechanisms. Therefore, more efforts are
needed to study the failure mechanism of double-layer tubes in various
conditions.

In recent years, the advantages of double-layered structures have
been studied by researchers. Yavari et al. [20] discovered that the
presence of eigentwist in a solid can significantly impact a structure’s
reaction to loads. These effects are related to the nonlinear response
of the material, the geometry of the structure, and a variety of eigen-
strains, and can be extremely non-trivial in finite deformations. Recent
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308-0161/© 2023 Elsevier Ltd. All rights reserved.

ttps://doi.org/10.1016/j.ijpvp.2023.104928
eceived 18 January 2023; Received in revised form 18 February 2023; Accepted 1
 March 2023

https://www.elsevier.com/locate/ijpvp
http://www.elsevier.com/locate/ijpvp
mailto:chelseazhangjin@163.com
https://doi.org/10.1016/j.ijpvp.2023.104928
https://doi.org/10.1016/j.ijpvp.2023.104928
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpvp.2023.104928&domain=pdf


International Journal of Pressure Vessels and Piping 203 (2023) 104928J. Du et al.
Nomenclature

Parameters of single-layer tube

𝑏 Outer radius
𝜈 Poisson’s ratio
𝑘 Volume fraction
𝜎𝜃 Tangential stress
𝜀𝜃 Tangential strain
𝝈𝑃 Stress field in the plastic region

Parameters of double-layer tube

𝑟𝑏 Middle radius
𝐸1 Elastic modulus of inner layer
𝜈1 Poisson’s ratio of inner layer
𝑘1 Volume fraction of inner layer
𝛼 Ratio of yield stress
𝝈𝐸
1 Stress field in the elastic region of inner

layer
𝛿1 Displacement at contact position of inner

layer
𝑞1 Contact pressure increment
𝑞 Total contact pressure
max 𝑝𝑒 Maximum value of elastic limit
𝑟𝑜 Elastoplastic radius of outer layer
𝑝𝑝2 Plastic limit due to outer failure
𝑝𝑠𝑑1 Shakedown limit of inner failure
𝑝𝑠𝑑3 Shakedown limit of simultaneous failure
𝑎 Inner radius
𝐸 Elastic modulus
𝜎𝑠 Yield strength
𝜎𝑟 Radial stress
𝜀𝑟 Radial strain
𝝈𝐸 Stress field in the elastic region
𝑟𝑎 Inner radius
𝑟𝑐 Outer radius
𝐸2 Elastic modulus of outer layer
𝜈2 Poisson’s ratio of outer layer
𝑘2 Volume fraction of outer layer
𝛽 Ratio of elastic modulus
𝝈𝑃
2 Stress field in the plastic region of outer

layer
𝛿2 Displacement at contact position of outer

layer
𝑞0 Contact pressure
𝑝𝑒 Elastic limit
𝑟𝑖 Elastoplastic radius of inner layer
𝑝𝑝1 Plastic limit due to inner failure
𝑝𝑝3 Plastic limit due to simultaneous failure
𝑝𝑠𝑑2 Shakedown limit of outer failure

studies [21,22] have demonstrated that a double-layer tube made
of two isotropic layers that are twisted in opposing directions and
soldered together can achieve the same result by taking advantage of
geometrical and material incompatibilities. While the origins of these
occurrences in anisotropic tubes are well known, the causes of this ef-
fect in isotropic double-layer tubes are less well understood. Researches
has shown that combining geometrical dimensions and material proper-
ties can demonstrate the inversion and perversion effects. Furthermore,
2

by carefully selecting the material and geometric characteristics in the
inner and outer layers, twist behavior may be designed [23,24].

For the determination of load bearing capacity, let us introduce
the limit analysis theory, which allows to predict the ultimate load.
This theory, developed intuitively in the 1930s, is now widely used
and has become recommended by design codes on pressure vessels and
on reinforced concrete slabs. Using limit analysis method to calculate
the ultimate bearing capacity of the structure does not involve the
loading process, which can overcome the difficulties encountered in the
calculation of gradual loading. It is an essential method to deal with the
maximum strength problem of complex structures [25,26]. On the other
hand, as the applicable structures of pressure vessels and gas pipelines,
double-layer tube is often exposed to simultaneous variable actions of
loads. In the case of variable repeated loads, the magnitude of ultimate
load in monotonic case is not the only factor characterizing the struc-
tural safety. The experimental tests show that, in some cases, we can
observe after a transient phase an accumulation of plastic strains lead-
ing to excessive deformations and reversed plastic deformations [27].
These two kind of failure is called incremental collapse (ratcheting)
and accommodation (fatigue) [28,29]. The structural safety requires
that the power dissipated by the plastic deformation due to repeated
load should eventually cease, where the cyclic behaviors will eventually
become pure elastic responses [19,30]. The corresponding safety load
is called shakedown limit load, below which the structural safety is
guaranteed. This indicates to introduce the shakedown analysis the-
ories [31,32], developed from limit analysis, which does not require
the complex loading history and leads to the simplicity of computation
[33,34]. In particular, the collapse by development of a mechanism,
as in limit analysis, can be observed as the special case of ratcheting
during the first cycle in cyclic loading case if the load magnitude is too
large. This will lead to different fracture mechanism of the considered
tube structures.

Currently, the available studies of double-layer tube are mainly
focused on the same material of inner and outer layers, which greatly
reduces the flexibility of structure design. Consequently, we aim at
calculating the ultimate strength of double layer tube under monotonic
load and long-term strength under cyclic loads by limit and shakedown
analysis methods, respectively. The effects of different material prop-
erties and geometric designs will be considered. Firstly, we examine
the stress and displacement condition of the inner and outer layers
by using various materials, and provide the analytical solution for
elastic limit. Then, the plastic limit is discussed in three cases. It is
discussed through the classification of the volume fraction of the inner
and outer layers, and it can be divided into four cases where the
inner and outer layers will fail due to different failure mechanism
(incremental collapse and fatigue). This paper proposes an analytical
approach to determine the optimum geometric design of the double-
layer tube by considering various material properties. The analytical
derivation of the optimal geometric design is of great importance for
engineering applications. The displacement continuity equation at the
contact position is derived, and the conditions for the inner and outer
layers to reach the elastic and shakedown limit simultaneously are
obtained. This advancement will significantly improve the elastic and
shakedown limit of the double-layer tube compared to the single-layer
one, making it a more efficient in engineering applications. It is found
that when the inner and outer layers simultaneously reach the elastic
and shakedown limit, the ultimate bearing capacity of double-layer
tube will be significantly improved [35–37]. The plastic failure modes
of the double-layer tube are discussed in detail, and we derive the
analytical conditions for judging the plastic failure modes based on
geometric size and mechanical properties. We identify three types of
plastic failure in the double-layer tube and find that adjusting the geo-
metric dimensions and material properties can lead to different failure
modes. By comparing the shakedown and plastic limits of the single-
layer tube, we find that the different failure modes of the double-layer

cylinder is related to the volume fraction k of the inner and outer layers.



International Journal of Pressure Vessels and Piping 203 (2023) 104928J. Du et al.
Fig. 1. The cross section of single-layer tube.

Four failure modes based on volume fraction k is identified and the
analytical value of the limit stress for each mode is computed. It is also
found that only when both layers fail due to fatigue simultaneously, the
shakedown limit of the double-layer tube reaches its maximum value.

This paper is organized in the following order. The problem descrip-
tion and basic formations is provided in Section 2. We start from the
simplest case of singer-layer tube, and then extend to double layer case.
The effects of geometric condition and material properties on the elastic
limit are determined, as well as the relationship between the internal
pressure load and the contact pressure. In Section 3, by the use of the
displacement continuity condition at the contact surface, the plastic
failure in monotonic load case of the double-layer tube is obtained.
It is found that the plastic limit of the double-layer tube reaches the
maximum when both the inner and outer layers reach the complete
plastic state. Then, according to different the volume fraction of the
inner and outer layers subjected to cyclic loads, the fatigue failure and
excessive deformation in the first cycle are divided into four cases in
Section 4 in view of shakedown analysis. The shakedown limit load of
the double-layer tube is also computed developed from the single layer
case. The last section is devoted to the conclusions.

2. Problem description and basic formulations

In this study, we aim at providing the plastic limit and shakedown
limit of double-layer tube considering the different materials properties
of inner and outer layers. To start from the simplest case, the basic
formulations and computation of elastic limit of single layer tube will
be firstly provided in the first subsection, and then extended to the
double-layer case in the second and third subsections.

2.1. Plastic and shakedown limit of single-layer tube

We consider the stress and displacement fields in the hollow tube
described by cylindrical coordinate {𝐞𝑟, 𝐞𝜃 , 𝐞𝑧}. Since the single-layer
tube is axisymmetric, the stress and displacement are only single-valued
functions of radius 𝑟. In this paper, von Mises yield criterion is adopted
and the material is considered to be elastic perfectly-plastic, as shown
in Fig. 1. The inner and outer radii are respectively denoted 𝑎 and 𝑏,
giving the void volume fraction 𝑘 = 𝑎2∕𝑏2 < 1. The single-layer tube
is subjected to a uniform stress 𝑝1 and 𝑝2 upon its inner and outer
boundaries.

The differential equation of stress equilibrium condition for the
considered structure can be written as:
𝑑𝜎𝑟
𝑑𝑟

+
𝜎𝑟 − 𝜎𝜃

𝑟
= 0 (1)

where 𝜎𝑟 is the radial stress and 𝜎𝜃 is the tangential stress.
Considering axial symmetry of single-layer tube, its geometric equa-

tion takes the form as:

𝜀 = 𝑑𝑢 , 𝜀 = 𝑢 (2)
3

𝑟 𝑑𝑟 𝜃 𝑟
where 𝜀𝑟 is the radial strain and 𝜀𝜃 is the tangential strain.
The elastic constitutive equation of the tube reads:

⎧

⎪

⎨

⎪

⎩

𝜀𝑟 =
1
𝐸
(𝜎𝑟 − 𝜈𝜎𝜃)

𝜀𝜃 = 1
𝐸
(𝜎𝜃 − 𝜈𝜎𝑟)

(3)

where 𝐸 and 𝜈 represent Young’s modulus and Poisson’s ratio, respec-
tively.

Since the inner and outer surfaces are subjected to internal outer
pressures 𝑝1 and 𝑝2, the boundary conditions can be obtained as:

𝜎𝑟(𝑎) = 𝑝1, 𝜎𝑟(𝑏) = 𝑝2 (4)

By combining Eqs. (1), (2), (3) and (4), the elastic stress field of
single-layer tube can be provided in the cylindrical frame:

𝝈𝐸 =
( 𝑝2 − 𝑝1

1 − 𝑘

) 𝑎
𝑟2
(𝒆𝑟⊗𝒆𝑟−𝒆𝜃⊗𝒆𝜃)+

𝑘𝑝1 − 𝑝2
1 − 𝑘

(𝒆𝑟⊗𝒆𝑟+𝒆𝜃⊗𝒆𝜃+
1
2
𝒆𝑧⊗𝒆𝑧)

(5)

the introduced volume fraction parameter is defined as 𝑘 = 𝑎2∕𝑏2 in the
equation.

Similarly, one has the elastic displacement field:

𝑢 =
(1 + 𝜈)(𝑝1 − 𝑝2)𝑎2

𝐸(1 − 𝑘)𝑟
+

(1 − 𝜈)(𝑘𝑝1 − 𝑝2)𝑟
𝐸(1 − 𝑘)

(6)

Adopting the von Mises yield criterion, the single-layer tube is made
of an elasto-plastic material obeying the following function:

𝐹 (𝝈) = 𝜎𝑒𝑞(𝝈) − 𝜎𝑠 ≤ 0 (7)

where 𝜎𝑒𝑞 =
√

3
2 𝒔 ∶ 𝒔 is the equivalent stress defined from the devia-

toric part 𝒔 of the stress tensor 𝝈. 𝜎𝑠 > 0 represents the yield stress. The
plastic strain rate tensor is given by the normality law:

𝜺̇𝑝 = 𝜆 𝜕𝐹
𝜕𝝈

(8)

where 𝜆 ≥ 0 is the plastic multiplier.
On the other hand, the elastic strains are related to the stresses by

Hookes law:

𝜺𝑒 = 𝑫 ∶ 𝝈 (9)

where 𝑫 is the compliance tensor.
The total strain 𝜺 can be divided into elastic and plastic parts,

combining the properties of elasticity and plasticity:

𝜺 = 𝜺𝑒 + 𝜺𝑝 (10)

Considering Eqs. (5) and (7), the yield function condition of the
single-layer tube can be computed by:

max
𝑟𝑎≤𝑟≤𝑟𝑏

𝜎𝑒𝑞 = max
𝑟𝑎≤𝑟≤𝑟𝑏

√

3
( 𝑝1 − 𝑝2

1 − 𝑘

) 𝑎2

𝑟2
≤ 𝜎𝑠 (11)

As a result, the elastic limit can be obtained by considering the
initial yielding condition at inner boundary 𝑟 = 𝑎:

𝑝1 − 𝑝2 =
1
√

3
𝜎𝑠(1 − 𝑘) (12)

Taking Eqs. (1), (4) and (7) into account, the stress field in plastic
region is:

𝝈𝑃 =

(

2𝜎𝑠
√

3
ln( 𝑟

𝑎
) − 𝑝1

)

(𝒆𝑟⊗𝒆𝑟+𝒆𝜃⊗𝒆𝜃+𝒆𝑧⊗𝒆𝑧)+
2𝜎𝑠
√

3
(𝒆𝜃⊗𝒆𝜃+

1
2
𝒆𝑧⊗𝒆𝑧)

(13)

If the whole section of tube is filled with plastic zone 𝐹 (𝝈)𝑟=𝑏 = 0,
the plastic limit of single-layer tube is:

𝑝1 − 𝑝2 = − 1
√

𝜎𝑠 ln 𝑘 (14)

3
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Beyond this elastic limit, plastic strains appear. For the variable
loading case, if the tube shakes down the applied loads 𝑝1 and 𝑝2 belong
to the domain:

(𝑝1 − 𝑝2)− ≤ 𝑝1 − 𝑝2 ≤ (𝑝1 − 𝑝2)+ = (𝑝1 − 𝑝2)− + 𝛥(𝑝1 − 𝑝2) (15)

where (𝑝1−𝑝2)± denote the maximum and minimum values of (𝑝1−𝑝2).
For the application of Melan’s theorem [31], the critical idea of the

statical approach is to determine the admissible residual stress fields 𝝆̄
according to De Saxcé [18]:

• 𝝆̄ is time-independent,
• 𝝆̄ is a residual stress field,
• 𝝆̄ is strictly plastically admissible in the sense that 𝐹 (𝝈𝐸 + 𝝆̄) < 0

at any time.

Because of the axial symmetry, the residual stress field is assumed
in the following form:

𝝆̄ = 𝜌̄𝑟𝑟𝒆𝑟 ⊗ 𝒆𝑟 + 𝜌̄𝜃𝜃𝒆𝜃 ⊗ 𝒆𝜃 + 𝜌̄𝑧𝑧𝒆𝑧 ⊗ 𝒆𝑧 (16)

and must satisfy the only internal equilibrium equation:

𝑟
𝑑𝜌̄𝑟𝑟
𝑑𝑟

= 𝜌̄𝜃𝜃 − 𝜌̄𝑟𝑟 (17)

In order to construct the residual stress field, it is inspired from the
tatical solution of hollow tube only subjected to outer pressure [18]:

𝑟
𝑑𝜌̄𝑟𝑟
𝑑𝑟

+
√

3
( 𝑝1 − 𝑝2

1 − 𝑘

) 𝑎2

𝑟2
|

|

|

|

≤ 𝜎𝑠 (18)

The previous inequality is satisfied for the specified load domain
provided that:

− 𝜎𝑠 ≤ 𝑟
𝑑𝜌̄𝑟𝑟
𝑑𝑟

+
√

3
( 𝑝1 − 𝑝2

1 − 𝑘

)

−

𝑎2

𝑟2
≤ 𝜎𝑠,

− 𝜎𝑠 ≤ 𝑟
𝑑𝜌̄𝑟𝑟
𝑑𝑟

+
√

3
( 𝑝1 − 𝑝2

1 − 𝑘

)

+

𝑎2

𝑟2
≤ 𝜎𝑠

(19)

We only keep the strongest inequalities while taking into account
he superior and inferior envelopes:

𝜎𝑠 −
√

3
( 𝑝1 − 𝑝2

1 − 𝑘

)

−

𝑎2

𝑟2
≤ 𝑟

𝑑𝜌̄𝑟𝑟
𝑑𝑟

≤ 𝜎𝑠 −
√

3
( 𝑝1 − 𝑝2

1 − 𝑘

)

+
(20)

Therefore, there exists a time-independent residual stress field only
f for 𝑎 ≤ 𝑟 ≤ 𝑏:

(𝑝1 − 𝑝2)
𝑎2

𝑟2
= 2

√

3
𝜎𝑠(1 − 𝑘) (21)

If the pressure (𝑝1−𝑝2)− = 0, we can get the shakedown limit of the
single-layer tube as:

𝑝1 − 𝑝2 =
2
√

3
𝜎𝑠(1 − 𝑘) (22)

.2. Double-layer tube with contact pressure increment at intermediate
urface

The materials that make up the inner and outer layers are diverse,
nd so are their mechanical characteristics and geometric dimensions.
n order to assemble the outer layer on the inner layer, the outer
ayer is usually heated to make its geometric size larger. Therefore, the
uter layer can then be assembled on the inner layer, which forms a
ouble-layer tube. After the assembly is completed, the temperature
f the outer layer will gradually decrease and its geometric size will
hrink. Then, it will produce a uniform interaction force between the
ntermediate surface of the inner and outer layer, which will be noted
s the contact pressure 𝑞0.

After assembly, the inner and outer layers combine to produce a
ouble-layer tube, which is illustrated in Fig. 2. The inner and outer
adii are noted as 𝑟𝑎 and 𝑟𝑐 , and the radius of intermediate surface is
4

𝑏. If the internal pressure 𝑝 is applied to it, there will be a contact
pressure increment 𝑞1 at the contact position and there is a single-
valued relationship between them. 𝑞1 is not a real external pressure,
but an internal pressure that depends on the applied load 𝑝. In this
study, 𝑞0 at the contact surface due to the heating of the outer layer
s defined as the initial contact pressure. Since 𝑞1 is also at the contact
urface, the total applied load at the outer wall q is the sum of the
ontact pressure 𝑞0 and 𝑞1 (𝑞 = 𝑞0 + 𝑞1) by isolating the inner layer

(see Fig. 2(a)). Therefore, the functional relationship between 𝑞1 and 𝑝
can be derived by the displacement continuity condition at the contact
position. With the increase of internal pressure, the contact pressure
increment will also increase. Ignoring the initial contact pressure 𝑞0,
the isolated inner layer is not only affected by the internal pressure 𝑝,
but also by 𝑞1, while the isolated outer layer is only subjected to 𝑞1.

Using the result of single-layer case (5), we obtain the elastic stress
field of inner layer:

𝝈𝐸
1 =

(

𝑞1 − 𝑝
1 − 𝑘1

) 𝑟2𝑎
𝑟2
(𝒆𝑟⊗𝒆𝑟−𝒆𝜃⊗𝒆𝜃)+

𝑘1𝑝 − 𝑞1
1 − 𝑘1

(𝒆𝑟⊗𝒆𝑟+𝒆𝜃⊗𝒆𝜃+
1
2
𝒆𝑧⊗𝒆𝑧)

(23)

where 𝐸1, 𝜈1 and 𝑘1 = 𝑟2𝑎∕𝑟
2
𝑏 are Young’s modulus, Poisson’s ratio and

volume fraction of the inner layer, respectively.
Similarly, displacement field of inner layer can be written as:

𝑢1 =
(1 + 𝜈1)(𝑝 − 𝑞1)𝑟2𝑎

𝐸1(1 − 𝑘1)𝑟
+

(1 − 𝜈1)(𝑘1𝑝 − 𝑞1)𝑟
𝐸1(1 − 𝑘1)

(24)

The stress field of outer layer takes the form as:

𝝈𝐸
2 =

𝑘2𝑞1
1 − 𝑘2

(𝒆𝑟⊗𝒆𝑟+𝒆𝜃⊗𝒆𝜃 +𝒆𝑧⊗𝒆𝑧)+
(

𝑞1
1 − 𝑘2

) 𝑟2𝑏
𝑟2
(−𝒆𝑟⊗𝒆𝑟+𝒆𝜃⊗𝒆𝜃)

(25)

here 𝐸2, 𝜈2 and 𝑘2 = 𝑟2𝑏∕𝑟
2
𝑐 are Young’s modulus and Poisson’s ratio

nd volume fraction of the outer layer.
The displacement field of outer layer can be computed as:

2 =
(1 + 𝜈2)𝑞1𝑟2𝑏
𝐸2(1 − 𝑘2)𝑟

+
(1 − 𝜈2)𝑘2𝑞1𝑟
𝐸2(1 − 𝑘2)

(26)

Let us introduce a coefficient 𝜇1, where the relationship between 𝑝
and 𝑞1 can be defined as 𝑝 = 𝜇1𝑞1. By integrating Eqs. (24), (26) and
𝑢1(𝑏) = 𝑢2(𝑏), we can obtain the expression of 𝜇1:

2𝜇1 = 1+ 𝜈1 + (1− 𝜈1)𝑘−11 + 𝛽𝑘−11 (1−𝑘1)(1−𝑘2)−1[1+ 𝜈2 + (1− 𝜈2)𝑘2] (27)

Fig. 3 illustrates the variation of the introduced coefficient 𝜇−1
1 in

ifferent geometric dimensions with respect to the different value of
(ratio of Young’s moduli between inner and outer layers). We can

ind that as the thickness of inner layer increases, the value of 𝜇−1
1 also

ncreases (Fig. 3(a)). If the thickness of the outer layer becomes larger,
he coefficient 𝜇−1

1 will become smaller (Fig. 3(b)). The coefficient 𝜇1
ill change with respect to the elastic modulus ratio, and the greater

he elastic modulus ratio is, the greater the coefficient 𝜇1 will be. When
he thickness of the inner cylinder is zero, the structure will be reduced
o a single-layer tube, and the value of the coefficient 𝜇1 is 1, which is
lso in good agreement with the actual situation.

.3. Elastic limit of double-layer tube

Now we consider the contact pressure 𝑞0. The contact pressure 𝑞0 is
ue to the assembly of the double-layer tube. Specifically, during the
abrication process, the outer layer is heated to expand its geometrical
imension, and then it is assembled onto the inner layer. As the outer
ayer cools down, its radius will shrink, generating contact pressure
0 at the contact position of the double-layer tube. As a result, the
nner layer is subjected to contact pressure 𝑞0 in the outer wall, and
he outer layer is subjected to contact pressure 𝑞0 in the inner wall.

Based on the displacement equation Eq. (6) of the single-layer tube,
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Fig. 2. The cross section and side view of double-layer tube composed of different materials.
Fig. 3. Variation of 𝜇1 with respect to different values of 𝛽 = 𝐸1∕𝐸2.
we can derive the displacements of the inner and outer layers (𝛿1 and
𝛿2) under contact pressure 𝑞0:

𝛿1 = 𝑢(𝑟𝑏)|𝑝1=0,𝑝2=𝑞0 =
[(1 + 𝜈1)𝑘1 + 1 − 𝜈1]𝑟𝑏𝑞0

𝐸1(1 − 𝑘1)
(28)

and

𝛿2 = 𝑢(𝑟𝑏)|𝑝1=𝑞0 ,𝑝2=0 =
[(1 − 𝜈2)𝑘2 + 1 + 𝜈2]𝑟𝑏𝑞0

𝐸2(1 − 𝑘2)
(29)

Combining 𝛿 = 𝛿1 + 𝛿2 with the above equation, we can obtain that:

𝑞0 = 𝜇0𝛿 (30)

where

𝜇0 = 𝑟−1𝑏

[

(1 + 𝜈1)𝑘1 + 1 − 𝜈1
𝐸1(1 − 𝑘1)

+
(1 − 𝜈2)𝑘2 + 1 + 𝜈2

𝐸2(1 − 𝑘2)

]−1
(31)

If the contact pressure 𝑞0 is calculated using the original dimensions
(𝑟𝑏 + 𝛿1 and 𝑟𝑏 − 𝛿2), the expression for the volume fraction 𝑘1 = 𝑟2𝑎∕𝑟

2
𝑏

will need to be changed to a more complex form 𝑘1 = 𝑟2𝑎∕(𝑟𝑏+𝛿1)2. This
will increase the equation complexity and the amount of computation
required. However, since 𝛿1 is much smaller than 𝑟𝑏, the volume
fraction expression k1 shows that the volume fraction before and after
deformation is approximately equal (𝑟2𝑏 ≈ (𝑟𝑏+𝛿1)2). Therefore, using the
deformed diameter (𝑟𝑏) to calculate the contact pressure will result in
minimal deviation and greatly simplify the complexity of expressions.

The variations of 𝑟𝑏𝜇0∕𝐸1 in different geometric dimensions with
respect to the different value of 𝛽 are provided in Fig. 4. When the inner
and outer layers thickness increases, the coefficient 𝜇0 will gradually
decreases. For the particular case where the inner or outer layer thick-
ness is reduced to zero (𝑟 ∕𝑟 or 𝑟 ∕𝑟 = 1), the value of the coefficient
5

𝑎 𝑏 𝑏 𝑐
𝜇0 will be reduced to zero. The value of the coefficient 𝜇0 becomes
smaller with the decrease of the elastic modulus ratio 𝛽.

The inner and outer layers of the tube are expected to be in
the elastic limit state simultaneously, which provide us the following
conditions:
2(𝑝 − 𝑞)
1 − 𝑘1

= 2
√

3
𝜎𝑠1,

2𝑞
1 − 𝑘2

= 2
√

3
𝜎𝑠2 (32)

where 𝜎𝑠1 and 𝜎𝑠2 is the yield stresses of inner and outer layers.
If both the inner and outer layers simultaneously approach their

elastic limit, there will exist a certain relationship between 𝑝 and 𝑞,
which is noted as 𝑝 = 𝜇𝑞. Taking Eq. (32) into account, the expression
of coefficient 𝜇 can be stated as follows:

𝜇 = (1 − 𝑘2)−1[1 − 𝑘2 + 𝛼(1 − 𝑘1)] (33)

where 𝛼 = 𝜎𝑠1∕𝜎𝑠2 is the ratio of yield stresses between inter and outer
layers.

Hence, a suitable difference between outer radius of inner layer and
inner radius of outer layer before assembly can be found (noted as 𝛿) of
double-layer tube. In practical engineering applications, the inner and
outer layer will reach the elastic limit at the same time if the 𝛿 satisfies
Eq. (34). By combining 𝑝 = 𝜇1𝑞1, 𝑞0 = 𝜇0𝛿, 𝑝 = 𝜇𝑞, and 𝑞 = 𝑞0 + 𝑞1, the
expression of parameter 𝛿 can be derived as:

𝛿 = 𝜇−1
0 (𝜇−1 − 𝜇−1

1 )𝑝 (34)

Now we consider a double-layer tube satisfying the above condition.
Using Eq. (32), the elastic limit of the double-layer tube can be given
by:

𝑝𝑒 =
1
√

𝜎𝑠2[1 − 𝑘2 + 𝛼(1 − 𝑘1)] (35)

3
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Fig. 4. Variation of 𝑟𝑏𝜇0∕𝐸1 with respect to different values of 𝛽 = 𝐸1∕𝐸2.
Fig. 5. Variation of 𝑝𝑒 with respect to different values of 𝛼 = 𝜎𝑠1∕𝜎𝑠2.
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Using the derivative relationship 𝜕𝑝𝑒∕𝜕𝑟𝑏 = 0, it can be obtained
that 𝑝𝑒 can take the maximum value max 𝑝𝑠 when 𝑟𝑏 =

√

𝛼𝑟𝑎𝑟𝑐 . The
expression of the maximum elastic limit max 𝑝𝑒 is:

max 𝑝𝑒 =
1
√

3
𝜎𝑠2(𝛼 + 1)(𝑟𝑐 − 𝑟𝑎)(𝑟𝑐 − 𝛼𝑟𝑎)−1(1 − 𝑘−12 ) (36)

The elastic limit 𝑝𝑒 of double-layer tube is related to 𝜎𝑠1, 𝜎𝑠2,
1 = 𝑟2𝑎∕𝑟

2
𝑏 and 𝑘2 = 𝑟2𝑏∕𝑟

2
𝑐 . The variation of 𝑝𝑒 is shown in Fig. 5 by

onsidering different geometric dimensions of inner and outer layers. In
rder to investigate the effects of parameter 𝛼 on the elastic limit 𝑝𝑒, the
alue of 𝛼 is set to be 0.6, 0.8, 1.0, 1.2 and 1.4. It can be concluded that
he elastic limit 𝑝𝑒 increases with the stress ratio parameter 𝛼. However,
s the thickness reduces, the elastic limit also decreases both in two
ases of Fig. 5.

Now we compare the elastic limit 𝑝𝑒 of single-layer tube and double-
layer tube having the same thickness. Fig. 6 illustrates the difference
in elastic limit between them. A significant improvement of elastic
limit can be observed for the double-layer tube. If the yield stress of
the double-layer tube is reduced by 40%, then the same load bearing
capacity can also be achieved by increasing the thickness. However, in
engineering application, the thickness cannot be increased infinitely.
Under the condition of constant thickness, we can improve the elastic
limit by controlling the middle radius 𝑟 as shown in Fig. 6.
6

𝑏

3. Plastic limit of double-layer tube under monotonic load

With the continuous increase of the internal pressure 𝑝, the inner
nd outer layers will be in elastoplastic state. It is known that the inner
r outer layer will enter into the plastic state from the inner part, and
he plastic zone will develop further outward the outer boundary with
he increase of 𝑝. If the plastic zone fills the entire section, then it can
e considered that the inner or outer layers has reached a complete
lastic state, in other words, it has undergone plastic failure.

For the double-layer tube, the behavior of plastic failure is more
omplicated than the single-layer tube. The plastic failure can be
ivided into three types: the plastic failure of inner layer; the plastic
ailure of outer layer; the inner and outer layers are in a completely
lastic limit state at the same time. They will be fully discussed in this
ection.

.1. Displacement continuity equation

The following part describes elastoplastic radius, stress continuity
nd displacement continuity conditions, when both the inner and outer
ayers are in the elastoplastic state. In the transition of the elastic and
lastic zone, the continuity conditions always need to be fulfilled in
oth inner and outer layers. The displacement continuity condition
ust be satisfied at the contact surface. As shown in Fig. 7(a), the inner
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Fig. 6. The comparisons of elastic limit between single-layer tube and double-layer tube.

Fig. 7. The cross section of double-layer tube in elasto-plastic state.
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layer contains an elastic zone 𝑟𝑖 ≤ 𝑟 ≤ 𝑟𝑏 and a plastic zone 𝑟𝑎 ≤ 𝑟 ≤ 𝑟𝑖.
Similarly, the outer layer is composed of an elastic zone 𝑟𝑜 ≤ 𝑟 ≤ 𝑟𝑐 and

plastic zone 𝑟𝑏 ≤ 𝑟 ≤ 𝑟𝑜 (see Fig. 7(b)).
Considering Eq. (5), the radial stress of the inner layer at the elastic

egion 𝑟 = 𝑟𝑖 can be obtained as:

𝑟(𝑟𝑖) = − 1
√

3
𝜎𝑠1

(

1 −
𝑟2𝑖
𝑟2𝑏

)

− 𝑞 (37)

Similarly, the radial stress of the inner layer in the plastic region
𝑟 = 𝑟𝑖 takes the form as:

𝜎𝑟(𝑟𝑖) =
2
√

3
𝜎𝑠1 ln(𝑟𝑖∕𝑟𝑎) − 𝑝 (38)

By combining Eqs. (37) and (38), the stress continuity equation is
given by:

𝑝 − 𝑞 = 1
√

3
𝜎𝑠1

(

1 −
𝑟2𝑖
𝑟2𝑏

)

+ 2
√

3
𝜎𝑠1 ln

𝑟𝑖
𝑟𝑎

(39)

Similarly, the stress continuity condition of the outer layer can be
expressed as:

𝑞 = 1
√

3
𝜎𝑠2

(

1 −
𝑟2𝑜
𝑟2𝑐

)

+ 2
√

3
𝜎𝑠2 ln

𝑟𝑜
𝑟𝑏

(40)

Taking Eqs. (24) and (26) into account, the radial displacement in
elastic zone of inner layer is obtained as:

𝑢1(𝑟𝑏) =
𝜎𝑠1𝑟2𝑖
√

3𝐸1𝑟
[1 + 𝜈1 + (1 − 𝜈1)𝑟−2𝑏 𝑟2] −

(1 − 𝜈1)𝑞𝑟
𝐸1

(41)

And the radial displacement in plastic zone of outer layer is:

2(𝑟𝑏) =
𝜎𝑠2𝑟2𝑜
√

3𝐸2𝑟
[1 + 𝜈2 + (1 − 𝜈2)𝑟2𝑜𝑟

−2
𝑐 ] (42)

The displacement continuity condition at contact surface 𝑟 = 𝑟𝑏 can
be obtained from Eqs. (41) and (42):

2𝛼𝑟2𝑖 =
√

3(1 − 𝜈1)𝜎−1𝑠2 𝑟
2
𝑏𝑞 + 𝛽𝑟2𝑜[1 + 𝜈2 + (1 − 𝜈2)𝑟2𝑜𝑟

−2
𝑐 ] (43)

ith the above formulations, the plastic failure modes of double-layer
ube under monotonic load will be discussed in the following part.

.2. Plastic failure modes of double-layer tube

There are three plastic failure modes of double-layer tube as men-
ioned at the beginning of this section. The method for distinguishing
he plastic failure of the double-layer tube is discussed as follows: if the
nner or outer layer is in elasto-plastic state, the radii 𝑟𝑖 or 𝑟𝑜 separating
he elastic and plastic regions will be used as the index for measuring
he degree of load capacity. According to the displacement continuity
q. (43), we can determine the unique relationship between 𝑟𝑖 and 𝑟𝑜
s shown in Fig. 7.

.2.1. Plastic limit due to the failure of inner layer
If the outer layer reaches a completely plastic state, in other words,

he elastoplastic radius 𝑟𝑜 in outer layer equals 𝑟𝑐 , the pressure at the
ontact surface of the inner and outer layers reads:

= − 1
√

3
𝜎𝑠2 ln 𝑘2 (44)

In this situation, the elastoplastic radius of the inner layer 𝑟𝑖 can be
alculated by the displacement continuous equation. Using Eqs. (40),
43) and (44), the elastoplastic radius of the inner layer can be obtained
s follows:

𝑖 = 𝑟𝑐

√

𝛼−1[𝛽 − 1
2
(1 − 𝜈1)𝑘2 ln 𝑘2] (45)

By comparing the calculated elastoplastic radius 𝑟𝑖 by Eq. (45) and
𝑟 , it is possible to judge the first plastic failure between the inner and
8

𝑏

outer layer. If 𝑟𝑖 > 𝑟𝑏, it shows that the inner layer has experienced
plastic failure earlier than the outer layer. According to Eq. (45), it can
be seen that plastic failure of inner layer can also be expressed as:

𝛼 < 𝛽𝑘−12 − 1
2
(1 − 𝜈1) ln 𝑘2 (46)

Since the outer layer is in an elastoplastic state in this instance while
he inner layer has reached a completely plastic state, the elastic–plastic
adius of the inner layer can be known as 𝑟𝑖 = 𝑟𝑏. By substituting it into

Eq. (43), the elastoplastic radius of the inner layer can be determined
uniquely as 𝑟𝑜 = 𝜆1𝑟𝑐 , where the introduced coefficient 𝜆1 is a load-
independent quantity, related to the mechanical properties and the
geometric parameters of the double-layer tube. It can be expressed in
the following form:

(1 − 𝜈1)[1 − 𝜆21 + ln(𝜆21𝑘
−1
2 )] + 𝛽𝜆21𝑘

−1
2 [1 + 𝜈2 + (1 − 𝜈2)𝜆21] − 2𝛼 = 0 (47)

Following the previous discussion, we know the plastic failure will
ccur in the inner layer. Therefore, by combining Eqs. (39) and (40),
he plastic limit of double-layer tube can be computed:

𝑝1 =
1
√

3
𝜎𝑠2[1 − 𝜆21 + ln(𝜆21𝑘

−𝛼
1 𝑘−12 )] (48)

Due to the symmetry of the double-layer tube, we use a quarter of
the structure to reduce the computational effort. The inner layer was
meshed using 1200 elements and 1271 nodes, while the outer layer
was meshed with 800 elements and 861 nodes. The computation is
carried out with the following data: 𝛼 = 1.2, 𝛽 = 1, 𝜈1 = 𝜈2 = 0.1,
𝜎𝑠1 = 100, 𝑟𝑎 = 0.4, 𝑟𝑏 = 0.8, 𝑟𝑐 = 1. According to Eq. (48), the limit
stress can be computed where the inner layer fails first. Therefore, we
can determine the intermediate radius of the inner layer as 𝑟𝑖 = 𝑟𝑏
= 0.8, and then derive the intermediate elastoplastic radius 𝑟𝑜 of the
outer layer according to the displacement continuity condition Eq. (43).
Finally, using the stress continuity condition Eqs. (39) and (40), the
values of 𝑝 and 𝑞 can be obtained. The equivalent plastic strain
(PEEQ) distribution of inner and outer layers under monotonic load
are illustrated in Fig. 8. The geometric and elastic parameters are set
as 𝛼 = 1.2, 𝛽 = 1, 𝜈1 = 𝜈2 = 0.3 and 𝑟2𝑏∕𝑟

2
𝑐 = 0.64. It can be seen that

the entire region of the inner layer will be covered in plastic zones
if the inner layer firstly fails due to plastic failure (Fig. 8(a)). At this
time, only the region near the inner boundary of the outer layer is in
plastic state, while the section near the outer wall is still in elastic state
(Fig. 8(b)).

3.2.2. Plastic limit due to the failure of outer layer
In this part, the case of outer layer in completely plastic state will

be considered, while the inner layer is in an elastic–plastic state. At
this time, the elastoplastic radius of the outer layer satisfies 𝑟𝑜 = 𝑟𝑐 , the
elastoplastic radius of the inner layer fulfills 𝑟𝑖 < 𝑟𝑏. In addition, the
plastic failure of the outer layer can also be expressed as follows:

𝛼 > 𝛽𝑘−12 − 1
2
(1 − 𝜈1) ln 𝑘2 (49)

As the derivation in the previous part, the elastoplastic radius 𝑟𝑜 = 𝑟𝑐
f the outer layer and the elastoplastic radius of the corresponding
nner layer can be uniquely calculated by the Eq. (43). Hence, the
lastoplastic radius of the inner layer is 𝑟𝑖 = 𝜆2𝑟𝑏 and the coefficient
2 can be expressed in the following form:

(1 − 𝜈1)𝑘2 ln(𝑘2) + 2𝛼𝜆22𝑘2 − 2𝛽 = 0 (50)

Taking Eqs. (39) and (40) into account, the plastic limit of the tube
due to plastic collapse of outer layer can be expressed as follows:

𝑝𝑝2 =
1
√

𝜎𝑠2[𝛼 − 𝛼𝜆22 + ln(𝜆2𝛼2 𝑘−𝛼1 𝑘−12 )] (51)

3
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Fig. 8. Plastic strain distribution of double-layer tube in plastic limit due to failure of inner layer.
Fig. 9. Variation of 𝑝𝑝3 with respect to different geometric dimensions.
.2.3. The plastic failure of inner and outer layers at the same time
In this part, we consider the plastic limit of tube due to the failure

f inner and outer layers at the same time. In this situation, the
lastoplastic radius of the inner layer is 𝑟𝑖 = 𝑟𝑏 and the elastoplastic

radius of the outer layer is 𝑟𝑜 = 𝑟𝑐 . Then, the following conditions
should be satisfied:

𝛼 = 𝛽𝑘−12 − 1
2
(1 − 𝜈1) ln 𝑘2 (52)

By integrating Eqs. (39) and (40), the plastic limit of double-layer
ube is:

𝑝3 = − 1
√

3
𝜎𝑠2 ln(𝑘𝛼1𝑘2) (53)

It is considered that the yield limit of the inner and outer layers
s the same 𝜎𝑠1 = 𝜎𝑠2, then the plastic limit of the double-layer tube
omposed of same material can be obtained by Eq. (53). The reduced
esult 𝑝𝑝3 = −[𝜎𝑠2 ln(𝑘1𝑘2)]∕

√

3 is in consistent with the that in [18] of
single layer tube, indicating that the result of Eq. (53) is general.

As shown in Fig. 9, we can easily observe that the plastic limit 𝑝𝑝3
increases with the parameter 𝛼. It is indicated that yield limit of inner
layer is more important to plastic limit of double-layer tube. However,
we can see 𝑝𝑝3 decreases as the thickness of the inner and outer layer
9

decreases.
3.3. Discussion on plastic failure modes

It is found that the relationship between 𝛼 and the 𝑘2 will affect the
plastic failure mode of the double-layer tube, which may be the plastic
failure of the inner layer, the plastic failure of the outer layer, or the
simultaneous failure of the inner and outer layers.

Fig. 10 depicts the relationship between the yield strength ratio
and the geometric size of the double-layer tube. From Fig. 10, we
can find that there are three plastic failure modes of the double-layer
tube. When the initial value locates on the upper side of the curve,
the outer layer plastic failure will firstly occur. When the initial value
locates on the curve, the inner and outer layers plastic failure will occur
simultaneously, When the initial value locates on the lower side of the
curve, the inner layer plastic failure will firstly occur.

4. Shakedown analysis of double-layer tube

In this section, we will consider the cyclic loading case. In order
to prevent the incremental collapse and fatigue failure, the structure
should undergo plastic deformation in the initial finite cycles, and
the response of the structure is pure elastic in the subsequent cycles.
Therefore, the main task is to determining the critical shakedown load

of double layer tube.
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Fig. 10. Variation of 𝛼 with respect to different geometric dimensions and different
ailure modes.

.1. The relationship between shakedown limit and plastic limit for different
ailure mechanism

According to previous research of hollow sphere under cyclic load
19], the structure might fail due to fatigue or excessive deformation
t the first cycle if the load amplitude is too large. Therefore, it is
lso necessary to determine the failure mechanism of double layer tube
epending on the geometric dimension and load amplitude.

For a single layer tube, if shakedown limit less than plastic limit,
he following condition is obtained considering Eqs. (14) and (22):

𝑠(1 − 𝑘) + 1
2
𝜎𝑠 ln 𝑘 < 0 (54)

hich is satisfied if:

< 𝑘 < 0.203 (55)

Therefore, if the dimension condition (55) is fulfilled, the tube
ill fail due to fatigue. Otherwise, the excessive deformation of the

tructure will lead to the fracture of tube at the first cycle. It can be
een the size of the shakedown limit and plastic limit is related to the
olume fraction 𝑘.

Therefore, the shakedown limit of double-layer tube can be dis-
ussed in four cases by considering different volume fractions of inner
ayer 𝑘1 and outer layer 𝑘2. Four cases (1) 0 < 𝑘1 < 0.203 and 0 <
𝑘2 < 0.203, (2) 0 < 𝑘1 < 0.203 and 0.203 < 𝑘2 < 1, (3) 0.203 < 𝑘1 < 1
nd 0 < 𝑘2 < 0.203, (4) 0.203 < 𝑘1 < 1 and 0.203 < 𝑘2 < 1 need
o be discussed. Case 2 and case 3 are similar, so the computation of
ong-term strength of case 3 is provided in Appendix in order to avoid
epetition.

.2. The shakedown limit analysis for 0 < 𝑘1 < 0.203 and 0 < 𝑘2 < 0.203

In this part, both the inner and outer layers will fail due to fatigue
ollapse. If 𝑞 = 𝜎𝑠2(1 − 𝑘2) which is shakedown limit of outer layer,
he outer layer will be in a critical state. Using Eq. (40), its critical
lastoplastic radius is 𝑟𝑜 = 𝜉𝑟𝑐 , where coefficient 𝜉 can be obtain as:

2 − 2𝑙𝑛𝜉 + 𝑙𝑛𝑘2 − 2𝑘2 + 1 = 0 (56)

Similarly, the critical elastic–plastic radius of inner layer is 𝑟𝑖 = 𝜂𝑟𝑏,
here coefficient 𝜂 is given by:

2 − 2𝑙𝑛𝜂 + 𝑙𝑛𝑘 − 2𝑘 + 1 = 0 (57)
10

1 1
.2.1. The fracture occurs firstly in the inner layer due to fatigue
If the inner layer is firstly fail due to fatigue, its elastoplastic radius

xceeds the critical value. In other words, if 𝑟𝑜 = 𝜉𝑟𝑐 , then 𝑟𝑖 > 𝜂𝑟𝑏.
Using Eq. (43), the following equation can be given:

𝛼 < (1 − 𝜈1)(1 − 𝑘2)𝜂−2 +
1
2
𝛽𝜉2𝜂−2𝑘−12 [1 + 𝜈2 + (1 − 𝜈2)𝜉2] (58)

The elastoplastic radius of the outer layer can be calculated by the
se of the critical state of the inner layer. Taking 𝑟𝑖 = 𝜂𝑟𝑏 and Eq. (43)

into account, we can obtain 𝑟𝑜 = 𝜆3𝑟𝑐 , in which the coefficient 𝜆3 is:

(1 − 𝜈1)(1 − 𝜆23 + ln 𝜆23𝑘
−1
2 ) + 𝛽𝜆23𝑘

−1
2 [1 + 𝜈2 + (1 − 𝜈2)𝜆23] − 2𝛼𝜂2 = 0 (59)

By substituting the elastoplastic radius 𝑟𝑖 = 𝜂𝑟𝑏 of the inner layer
and the elastoplastic radius 𝑟𝑜 = 𝜆3𝑟𝑐 of the outer layer into Eqs. (39)
and (40), the shakedown limit of the double-layer tube in this case can
be deduced as:

𝑝𝑠𝑑1 =
1
√

3
𝜎𝑠2[1 − 𝜆23 + 2𝛼(1 − 𝑘1) + ln 𝜆23𝑘

−1
2 ] (60)

Figs. 11 and 12 illustrate the comparison between analytical results
and numerical ones of the shakedown limit for 𝑟2𝑎∕𝑟

2
𝑏 = 0.16, 𝑟2𝑏∕𝑟

2
𝑐 =

0.16. The elastic constants are 𝛼 = 1.3, 𝜈1 = 𝜈2 = 0.3 and 𝛽 = 1. Since
the fatigue failure occurs firstly in the inner layer, the accumulative
equivalent plastic strain of the inner layer continuously increases, while
the plastic strain of the outer layer tends to remain constant.

4.2.2. The fracture occurs firstly in the outer layer due to fatigue
If the outer layer is firstly fail due to fatigue, the corresponding

elastoplastic radius firstly exceeds the critical value. In other words,
if 𝑟𝑜 = 𝜉𝑟𝑐 , then 𝑟𝑖 < 𝜂𝑟𝑏. Similar to the fatigue failure of inner layer,
we can deduce:

𝛼 > (1 − 𝜈1)(1 − 𝑘2)𝜂−2 +
1
2
𝛽𝜉2𝜂−2𝑘−12 [1 + 𝜈2 + (1 − 𝜈2)𝜉2] (61)

The following elastoplastic radius corresponding to the inner layer
s derived based on the critical state of the outer layer. If 𝑟𝑜 = 𝜉𝑟𝑐 , we
an get 𝑟𝑖 = 𝜆4𝑟𝑏 by Eq. (43), in which the coefficient 𝜆4 is given by:

1 − 𝜈1)(1 − 𝜉2 + ln 𝜉2𝑘−12 ) + 𝛽𝜉2𝑘−12 [1 + 𝜈2 + (1 − 𝜈2)𝜉2] − 2𝛼𝜆24 = 0 (62)

Substituting 𝑟𝑖 = 𝜆4𝑟𝑏 and 𝑟𝑜 = 𝜉𝑟𝑐 into Eqs. (39) and (40), and the
shakedown limit of the double-layer tube is computed as:

𝑝𝑠𝑑2 =
1
√

3
𝜎𝑠2[𝛼(1 − 𝜆24) + 2(1 − 𝑘2) + ln 𝜆2𝛼4 𝑘−𝛼1 ] (63)

4.2.3. Simultaneous fatigue failure of inner and outer layers
If the inner and outer layer reach the shakedown limit at the same

time, that is, if 𝑟𝑜 = 𝜉𝑟𝑐 , then 𝑟𝑖 = 𝜂𝑟𝑏. We can still have:

𝛼 = (1 − 𝜈1)(1 − 𝑘2)𝜂−2 +
1
2
𝛽𝜉2𝜂−2𝑘−12 [1 + 𝜈2 + (1 − 𝜈2)𝜉2] (64)

By obtaining the elastoplastic radius 𝑟𝑖 = 𝜂𝑟𝑏 and 𝑟𝑜 = 𝜉𝑟𝑐 , we
substitute them into Eqs. (39) and (40), and the shakedown limit of
the double-layer tube can be written as:

𝑝𝑠𝑑3 =
2
√

3
𝜎𝑠2[1 − 𝑘2 + 𝛼(1 − 𝑘1)] (65)

Fig. 13 illustrates the shakedown limit 𝑝𝑠𝑑3 with respect to different
geometric dimensions of inner and outer layers (left and right sub-
figures). It can be founded that when the thickness of the inner or
outer layer decreases, the shakedown limit of both the two layers also
decreases. However, the larger the yield limit ratio 𝑎𝑙𝑝ℎ𝑎 of double-
layer tube is, the greater the shakedown limit will be, which indicates
that the yield limit of the inner layer has a greater influence on the
shakedown limit of the double-layer tube.

It can be found from Fig. 14 that the double-layer tube has higher
long-term strength than the single-layer tube having the same thickness
and yield stress of metal solid. If the yield stress of the double-layer tube

is 60% of that of the single-layer tube, the bearing capacity can also be
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Fig. 11. Accumulative equivalent plastic strain(PEEQ) of outer layer does not increase after first loading.
Fig. 12. Accumulative equivalent plastic strain(PEEQ) of the inner layer is continuously increasing under cyclic loading.
Fig. 13. Variation of 𝑝𝑠𝑑3 with respect to different geometric dimensions.
i
t
o
s

compensated by increasing the thickness. However, with the infinite
increase of thickness, the shakedown limit finally tends to be constant.
If we keep the thickness of the double-layer tube constant, it can be
found that the intermediate radius 𝑟𝑏 will also affect the shakedown
limit of the double-layer tube. The specific value of the intermediate
radius can be determined according to Eq. (36). Compared with Fig. 6,
it can be found that when the inner and outer layers fatigue failure
occurs at the same time, the shakedown limit of the double cylinder
is twice the elastic limit, as that described in [19] for ductile porous
11

materials.
4.3. The shakedown limit analysis for 0 < 𝑘1 < 0.203 and 0.203 < 𝑘2 < 1

In this case, the situation is that the shakedown limit of inner layer
s less than the plastic limit and shakedown limit of outer layer is more
han plastic limit. Considering the effect of total contact pressure 𝑞 on
uter layer, if 𝑞 = −(𝜎𝑠2 ln 𝑘2)∕2, the outer layer will be in a critical
tate. The critical elastic–plastic radius is 𝑟𝑜 = 𝑟𝑐 .

4.3.1. The fracture occurs firstly in the inner layer due to fatigue
If the inner layer is firstly failed due to fatigue, the elastic–plastic
radius firstly exceeds the critical radius. In other words, if 𝑟𝑜 = 𝑟𝑐 , then
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Fig. 14. Comparison of long-term strength between single-layer tube and double-layer tube under cyclic loading.
t
v

i

𝑖 > 𝜂𝑟𝑏. One has:

< 𝛽𝜂−2𝑘−12 + 1
2
(1 − 𝜈1)𝜂−2 ln 𝑘−12 (66)

The elastic–plastic radius of the outer layer is calculated based on
the critical state of the inner layer. If 𝑟𝑖 = 𝜂𝑟𝑏, then we can get 𝑟𝑜 = 𝜆5𝑟𝑐
by Eq. (43), in which the coefficient 𝜆5 can be obtain as:

(1 − 𝜈1)(1 − 𝜆25 + ln 𝜆25𝑘
−1
2 ) + 𝛽𝜆25𝑘

−1
2 [1 + 𝜈2 + (1 − 𝜈2)𝜆25] − 2𝛼𝜂2 = 0 (67)

Substituting the elastic–plastic radius 𝑟𝑖 = 𝜂𝑟𝑏 and the elastic–plastic
radius 𝑟𝑜 = 𝜆5𝑟𝑐 into Eqs. (39) and (40), the shakedown limit of the
double-layer tube in this case can be obtained:

𝑝𝑠𝑑1 =
1
2
𝜎𝑠2[1 − 𝜆25 + 2𝛼(1 − 𝑘1) + ln 𝜆25𝑘

−1
2 ] (68)

.3.2. Plastic failure occurs firstly in the outer layer
If the tube is destroyed due to the excessive deformation of outer

ayer, the elastoplastic radius firstly exceeds the critical radius. If 𝑟𝑜 =
𝑟𝑐 , then 𝑟𝑖 < 𝜂𝑟𝑏. Then one has:

𝛼 > 𝛽𝜂−2𝑘−12 + 1
2
(1 − 𝜈1)𝜂−2 ln 𝑘−12 (69)

The elastoplastic radius of the inner layer is calculated by consid-
ering 𝑟𝑜 = 𝑟𝑐 , then we can get 𝑟𝑖 = 𝜆6𝑟𝑏 with Eq. (43), where the
oefficient 𝜆6 is given by:

1 − 𝜈 )𝑘 ln 𝑘 + 2𝛼𝜆2𝑘 − 2𝛽 = 0 (70)
12

1 2 2 6 2
By substituting 𝑟𝑖 = 𝜆6𝑟𝑏 of the inner layer and 𝑟𝑜 = 𝑟𝑐 of the outer
layer into Eqs. (39) and (40), the shakedown limit of the double-layer
tube is:

𝑝𝑠𝑑2 =
1
2
𝜎𝑠2[𝛼(1 − 𝜆26) + ln 𝜆2𝛼6 𝑘−𝛼1 𝑘−12 ] (71)

4.3.3. Simultaneous failure of inner layer and outer layer
If the outer layer reaches the plastic limit and the inner layer reaches

the shakedown limit simultaneously, the critical elastoplastic radii will
be both reached. if 𝑟𝑜 = 𝑟𝑐 , then 𝑟𝑖 = 𝜂𝑟𝑏. We can still get:

𝛼 = 𝛽𝜂−2𝑘−12 + 1
2
(1 − 𝜈1)𝜂−2 ln 𝑘−12 (72)

By substituting 𝑟𝑖 = 𝜂𝑟𝑏 and 𝑟𝑜 = 𝑟𝑐 into Eqs. (39) and (40), the
shakedown limit of the double-layer tube in this case can be obtained:

𝑝𝑠𝑑3 =
1
2
𝜎𝑠2[2𝛼(1 − 𝑘1) − ln 𝑘2] (73)

4.4. The shakedown limit analysis for 0.203 < 𝑘1 < 1 and 0.203 < 𝑘2 < 1

For this case of double-layer tube, its shakedown limit is greater
han the plastic limit for both inner and outer layers. And the maximum
alue of cyclic load should not exceed the plastic limit.

Through the previous discussion of the plastic limit, it is known that
f the relationship between 𝛼 and 𝑘2 satisfies:

𝛼 < 𝛽𝑘−1 − 1 (1 − 𝜈 ) ln 𝑘 (74)
2 2 1 2
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the shakedown limit of the double-layer tube is:

𝑝𝑠𝑑1 =
1
√

3
𝜎𝑠2[1 − 𝜆21 + ln(𝜆21𝑘

−𝛼
1 𝑘−12 )] (75)

If the relationship between 𝛼 and 𝑘2 satisfies:

𝛼 > 𝛽𝑘−12 − 1
2
(1 − 𝜈1) ln 𝑘2 (76)

he shakedown limit of the double-layer tube is:

𝑠𝑑2 =
1
√

3
𝜎𝑠2[𝛼 − 𝛼𝜆22 + ln(𝜆2𝛼2 𝑘−𝛼1 𝑘−12 )] (77)

If the relationship between 𝛼 and 𝑘2 satisfies:

𝛼 = 𝛽𝑘−12 − 1
2
(1 − 𝜈1) ln 𝑘2 (78)

he shakedown limit of the double-layer tube is:

𝑠𝑑3 = − 1
√

3
𝜎𝑠2 ln(𝑘𝛼1𝑘2) (79)

Consequently, it can be concluded that the long-term strength of
ouble-layer tube can be determined depending on the ratio of yield
tress and volume fraction of inner and outer layers, but not on the
lastic properties.

. Conclusion

In this study, by the use of the displacement continuity condition,
e derive the elastic, plastic and shakedown limits of the double-layer

ube when the inner and outer layers composed of different materials in
he framework of limit and shakedown analysis. The elastic constants
nd geometric dimensions of the inner and outer layers are reasonably
onsidered. It is found that the intermediate radius has an important
nfluence on the elastic limit. An optimal intermediate radius of the
ouble-layer tube is can increase the elastic limit.

Especially, the effects of different geometric sizes and material
roperties (elastic modulus, Poisson’s ratio and yield stress) of double
ayers on the plastic limit under monotonic load and shakedown limit
nder cyclic load have been fully discussed. The result shows that the
earing capacity of the double-layer tube under monotonic loading will
each the maximum value, when the inner and outer layers reach the
lastic limit or the plastic limit at the same time. The computation of
ong-term strength are divided into 4 different cases by considering
he different volume fraction of inner and outer layers. The two-layer
tructure may fail due to different mechanism (fatigue and excessive
eformation at first cycle) of inner or outer layers. Interestingly, Only
hen they reach the shakedown limit at the same time, the shakedown

imit of the double-layer tube will reach the maximum value. At this
ime, like the single-layer tube, the shakedown limit of the double-layer
ube is also twice of the elastic limit. Compared with the single-layer
ube, it is found that the bearing capacity of the double-layer one
as been significantly improved by applying appropriate geometric
imension and material in the fabrication in short-term and long-term.

RediT authorship contribution statement

Jiajiang Du: Data curation, Writing – original draft. Jin Zhang:
ethodology, Writing – reviewing and editing. Yanhui Liu: Software,
riting – reviewing and editing. Chong Shi: Conceptualization, Super-

ision. Xiusong Shi: Writing – reviewing and editing, Supervision.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
13

nfluence the work reported in this paper.
ata availability

Data will be made available on request.

cknowledgments

The authors would like to thank the National Natural Science Foun-
ation of China (Grant No. 11902111) and the Funds for the Disci-
linary Development, China (Research Starting Funds for High-level
alents: Grant No. 522020212) for the support.

ppendix. Shakedown limit analysis of double-layer tube for 𝟎.𝟐𝟎𝟑
𝒌𝟏 < 𝟏 and 𝟎 < 𝒌𝟐 < 𝟎.𝟐𝟎𝟑

In this part, the shakedown limit of inner layer is considered larger
han the plastic limit, and the shakedown limit of outer layer is less
han plastic limit. Considering the effect of total contact pressure 𝑞 on
uter layer, if 𝑞 = 𝜎𝑠2(1 − 𝑘2), the outer layer will be in a critical state,
here critical elastic–plastic radius is 𝑟𝑜 = 𝜉𝑟𝑐 .

.1. The fracture occurs firstly in the inner layer due to excessive plastic
eformation at first cycle

If the inner layer is destroyed firstly due to excessive plastic de-
ormation, the elastoplastic radius firstly exceeds the critical value. In
ther words, if 𝑟𝑜 = 𝜉𝑟𝑐 , then 𝑟𝑖 > 𝑟𝑏. We can still get:

𝛼 < (1 − 𝜈1)(1 − 𝑘2) +
1
2
𝛽𝜉2𝑘−12 [1 + 𝜈2 + (1 − 𝜈2)𝜉2] (80)

The elastoplastic radius of the outer layer is calculated by the
critical state of the inner layer. If 𝑟𝑖 = 𝑟𝑏, then we can get 𝑟𝑜 = 𝜆7𝑟𝑐
through Eq. (43), in which the coefficient 𝜆7 is given by:

(1 − 𝜈1)(1 − 𝜆27 + ln 𝜆27𝑘
−1
2 ) + 𝛽𝜆27𝑘

−1
2 [1 + 𝜈2 + (1 − 𝜈2)𝜆27] − 2𝛼 = 0 (81)

Substituting them into the stress continuity condition Eqs. (39) and
(40), the shakedown limit of the double-layer tube is:

𝑝𝑠𝑑1 =
1
2
𝜎𝑠2[1 − 𝜆27 + ln(𝜆27𝑘

−𝛼
1 𝑘−12 )] (82)

A.2. The fracture occurs firstly in the outer layer due to fatigue

If the fatigue collapse of outer layer is firstly arrived, the elasto-
plastic radius will exceeds the critical value. That is, if 𝑟𝑜 = 𝜉𝑟𝑐 , then
𝑟𝑖 < 𝑟𝑏. One has the following relation:

𝛼 > (1 − 𝜈1)(1 − 𝑘2) +
1
2
𝛽𝜉2𝑘−12 [1 + 𝜈2 + (1 − 𝜈2)𝜉2] (83)

The elastoplastic radius of the inner layer is calculated based on the
critical state of the outer layer. If 𝑟𝑜 = 𝜉𝑟𝑐 , then we can get 𝑟𝑖 = 𝜆8𝑟𝑏 by
using Eq. (43), where the coefficient of 𝜆8 is given by:

(1 − 𝜈1)[1 − 𝜉2 + ln(𝜉2𝑘−12 )] + 𝛽𝜉2𝑘−12 [1 + 𝜈2 + (1 − 𝜈2)𝜉2] − 2𝛼𝜆28 = 0 (84)

After calculating the maximum elastic–plastic radius of the outer
layer and the corresponding elastoplastic radius of the inner layer, the
maximum value of elastoplastic radius of the outer layer and the cor-
responding elastic–plastic radius of the inner layer are substituted into
the stress continuity condition Eqs. (39) and (40), and the shakedown
limit of the double-layer tube can be obtained:

𝑝 = 1𝜎 [𝛼(1 − 𝜆2) + 2(1 − 𝑘 ) + ln(𝜆2𝛼𝑘−𝛼)] (85)
𝑠𝑑2 2 𝑠2 8 2 8 1
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A.3. Simultaneous failure of inner layer (fatigue) and outer layer (excessive
deformation)

If the outer layer reaches the shakedown limit and the inner layer
reaches the plastic limit simultaneously, that is 𝑟𝑜 = 𝜉𝑟𝑐 , then 𝑟𝑖 = 𝑟𝑏.
The following equation can be obtained:

𝛼 = (1 − 𝜈1)(1 − 𝑘2) +
1
2
𝛽𝜉2𝑘−12 [1 + 𝜈2 + (1 − 𝜈2)𝜉2] (86)

After obtaining the elastoplastic radii of the outer and inner layers,
it is substituted into the stress continuity condition Eqs. (39) and (40).
The shakedown limit of the double-layer tube is:

𝑝𝑠𝑑3 =
1
2
𝜎𝑠2[2(1 − 𝑘2) − 𝛼 ln 𝑘2] (87)

References

[1] H.F. Abdalla, A novel methodology for determining the elastic shakedown limit
loads via computing the plastic work dissipation, Int. J. Press. Vessels Pip. 191
(2021) 104327.

[2] H. Peng, Y. Liu, H. Chen, Shakedown analysis of elastic-plastic structures
considering the effect of temperature on yield strength: theory, method and
applications, Eur. J. Mech. A Solids 73 (2019) 318–330.

[3] R. Singh, P. Singh, A. Kumar, Unusual extension–torsion–inflation couplings in
pressurized thin circular tubes with helical anisotropy, Math. Mech. Solids 24
(9) (2019) 2694–2712.

[4] H. Darijani, M. Kargarnovin, R. Naghdabadi, Design of thick-walled cylindrical
vessels under internal pressure based on elasto-plastic approach, Mater. Des. 30
(9) (2009) 3537–3544.

[5] N.-H. Kim, C.-S. Oh, Y.-J. Kim, J.-S. Kim, D.W. Jerng, P.J. Budden, Limit loads
and fracture mechanics parameters for thick-walled pipes, Int. J. Press. Vessels
Pip. 88 (10) (2011) 403–414.

[6] R. Sharma, A. Aggarwal, S. Sharma, Collapse pressure analysis in torsion of
a functionally graded thick-walled circular cylinder under external pressure,
Procedia Eng. 86 (2014) 738–747.

[7] X. Guojun, W. Jianhua, A rigorous characteristic line theory for axisymmetric
problems and its application in circular excavations, Acta Geotech. 15 (2) (2020)
439–453.

[8] X. Ni, X. Liu, Y. Liu, Calculation of ultimate loads and stable loads of strength-
differential thick cylinders by the twin shear strength theory, in: 4th International
Symposium on Test and Measurement, Shanghai, 2001, pp. 1102–1104.

[9] A. Benslimane, C. Medjdoub, M. Methia, M.A. Khadimallah, D. Hammiche,
Investigation of displacement and stress fields in pressurized thick-walled FGM
cylinder under uniform magnetic field, Mater. Today: Proc. 36 (2021) 101–106.

[10] S. Saeedi, M. Kholdi, A. Loghman, H. Ashrafi, M. Arefi, Thermo-elasto-plastic
analysis of thick-walled cylinder made of functionally graded materials using
successive approximation method, Int. J. Press. Vessels Pip. 194 (2021) 104481.

[11] V. Shlyannikov, Fatigue shape analysis for internal surface flaw in a pressurized
hollow cylinder, Int. J. Press. Vessels Pip. 77 (5) (2000) 227–234.

[12] Y. Cao, T. Tamura, H. Kawai, Investigation of wall pressures and surface flow
patterns on a wall-mounted square cylinder using very high-resolution Cartesian
mesh, J. Wind Eng. Ind. Aerodyn. 188 (2019) 1–18.

[13] J. Zhang, J. Shao, Q. Zhu, G. De Saxcé, A variational-based homogenization
model for plastic shakedown analysis of porous materials with a large range of
porosity, Int. J. Mech. Sci. 199 (2021) 106429.
14
[14] Q.-Y. Zhang, Computation for the torsion of a thick-walled tube with fillets using
tapered section assumption, Int. J. Press. Vessels Pip. 77 (8) (2000) 473–478.

[15] M.Z. Nejad, P. Fatehi, Exact elasto-plastic analysis of rotating thick-walled
cylindrical pressure vessels made of functionally graded materials, Internat. J.
Engrg. Sci. 86 (2015) 26–43.

[16] M. Takla, Instability and axisymmetric bifurcation of elastic-plastic thick-walled
cylindrical pressure vessels, Int. J. Press. Vessels Pip. 159 (2018) 73–83.

[17] Q. Zhu, J. Zhao, C. Zhang, Y. Li, S. Wang, Elastic–brittle–plastic analysis of
double-layered combined thick-walled cylinder under internal pressure, J. Press.
Vessel Technol. 138 (1) (2016).

[18] D. Weichert, G. Maier, Inelastic Behaviour of Structures under Variable Repeated
Loads: Direct Analysis Methods, Vol. 432, Springer, 2014.

[19] J. Zhang, W. Shen, A. Oueslati, G. De Saxcé, Shakedown of porous materials,
Int. J. Plast. 95 (2017) 123–141.

[20] A. Yavari, A. Goriely, The twist-fit problem: finite torsional and shear eigenstrains
in nonlinear elastic solids, Proc. R. Soc. A 471 (2183) (2015) 20150596.

[21] N. Cohen, Stacked dielectric tubes with electromechanically controlled radii, Int.
J. Solids Struct. 108 (2017) 40–48.

[22] N. Emuna, N. Cohen, Inflation-induced twist in geometrically incompatible
isotropic tubes, J. Appl. Mech. 88 (3) (2021).

[23] N. Emuna, N. Cohen, Inversion and perversion in twist incompatible isotropic
tubes, Extreme Mech. Lett. 46 (2021) 101303.

[24] N. Emuna, D. Durban, Stability analysis of arteries under torsion, J. Biomech.
Eng. 142 (6) (2020) 061011.

[25] H. Hui, P. Li, Plastic limit load analysis for steam generator tubes with local
wall-thinning, Nucl. Eng. Des. 240 (10) (2010) 2512–2520.

[26] S. Poonaya, U. Teeboonma, C. Thinvongpituk, Plastic collapse analysis of thin-
walled circular tubes subjected to bending, Thin-Walled Struct. 47 (6–7) (2009)
637–645.

[27] J. Zhang, W. Liu, Q. Zhu, J. Shao, A novel elastic–plastic damage model for rock
materials considering micro-structural degradation due to cyclic fatigue, Int. J.
Plast. (2022) 103496.

[28] A. Ampatzis, V. Psomiadis, E. Efthymiou, Plastic collapse of hardening spatial
aluminium frames: A novel shakedown-based approach, Eng. Struct. 151 (2017)
724–744.

[29] D. Floros, A. Ekberg, K. Runesson, A numerical investigation of elastoplastic
deformation of cracks in tubular specimens subjected to combined torsional and
axial loading, Int. J. Fatigue 91 (2016) 171–182.

[30] J. Zhang, A. Oueslati, W.Q. Shen, G. De Saxcé, Shakedown of porous material
with Drucker-Prager dilatant matrix under general cyclic loadings, Compos.
Struct. 220 (2019) 566–579.

[31] E. Melan, Theory statisch unbestimmter systeme aus ideal plastischen baustoff,
Sitzber. Akad. Wiss. (1936) 145–195.

[32] W. Koiter, General theorems for elastic-plastic solids, in: Progress in Solid
Mechanics, Vol. 1, 1960.

[33] M. Abdel-Karim, Shakedown of complex structures according to various
hardening rules, Int. J. Press. Vessels Pip. 82 (6) (2005) 427–458.

[34] R. Gumruk, A numerical investigation of dynamic plastic buckling behaviour of
thin-walled cylindrical structures with several geometries, Thin-Walled Struct. 85
(2014).

[35] H.F. Abdalla, M.M. Megahed, M.Y. Younan, A simplified technique for
shakedown limit load determination, Nucl. Eng. Des. 237 (12–13) (2007)
1231–1240.

[36] H.F. Abdalla, M.M. Megahed, M.Y. Younan, A simplified technique for shake-
down limit load determination of a large square plate with a small central hole
under cyclic biaxial loading, Nucl. Eng. Des. 241 (3) (2011) 657–665.

[37] X. Chen, X. Chen, D. Yu, B. Gao, Recent progresses in experimental investigation
and finite element analysis of ratcheting in pressurized piping, Int. J. Press.
Vessels Pip. 101 (2013) 113–142.

http://refhub.elsevier.com/S0308-0161(23)00045-5/sb1
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb1
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb1
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb1
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb1
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb2
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb2
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb2
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb2
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb2
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb3
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb3
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb3
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb3
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb3
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb4
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb4
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb4
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb4
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb4
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb5
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb5
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb5
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb5
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb5
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb6
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb6
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb6
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb6
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb6
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb7
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb7
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb7
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb7
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb7
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb8
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb8
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb8
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb8
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb8
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb9
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb9
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb9
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb9
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb9
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb10
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb10
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb10
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb10
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb10
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb11
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb11
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb11
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb12
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb12
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb12
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb12
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb12
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb13
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb13
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb13
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb13
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb13
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb14
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb14
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb14
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb15
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb15
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb15
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb15
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb15
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb16
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb16
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb16
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb17
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb17
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb17
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb17
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb17
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb18
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb18
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb18
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb19
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb19
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb19
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb20
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb20
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb20
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb21
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb21
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb21
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb22
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb22
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb22
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb23
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb23
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb23
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb24
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb24
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb24
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb25
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb25
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb25
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb26
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb26
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb26
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb26
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb26
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb27
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb27
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb27
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb27
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb27
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb28
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb28
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb28
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb28
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb28
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb29
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb29
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb29
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb29
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb29
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb30
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb30
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb30
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb30
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb30
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb31
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb31
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb31
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb32
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb32
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb32
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb33
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb33
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb33
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb34
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb34
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb34
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb34
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb34
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb35
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb35
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb35
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb35
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb35
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb36
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb36
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb36
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb36
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb36
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb37
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb37
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb37
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb37
http://refhub.elsevier.com/S0308-0161(23)00045-5/sb37

	Limit and shakedown analysis of double-layer tube considering different material properties 
	Introduction
	Problem description and basic formulations 
	Plastic and shakedown limit of single-layer tube
	Double-layer tube with contact pressure  increment at intermediate surface
	Elastic limit of double-layer tube

	Plastic limit of double-layer tube under monotonic load
	Displacement continuity equation
	Plastic failure modes of double-layer tube
	Plastic limit due to the failure of inner layer
	Plastic limit due to the failure of outer layer
	The plastic failure of inner and outer layers at the same time

	Discussion on plastic failure modes

	Shakedown analysis of double-layer tube
	The relationship between shakedown limit and plastic limit for different failure mechanism
	The shakedown limit analysis for 0<k1<0.203 and 0<k2<0.203
	The fracture occurs firstly in the inner layer due to fatigue
	The fracture occurs firstly in the outer layer due to fatigue
	Simultaneous fatigue failure of inner and outer layers

	The shakedown limit analysis for 0<k1<0.203 and 0.203<k2<1
	The fracture occurs firstly in the inner layer due to fatigue
	Plastic failure occurs firstly in the outer layer
	Simultaneous failure of inner layer and outer layer

	The shakedown limit analysis for 0.203<k1<1 and 0.203<k2<1

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix. Shakedown limit analysis of double-layer tube for 0.203 <k1<1 and 0<k2<0.203
	The fracture occurs firstly in the inner layer due to excessive plastic deformation at first cycle 
	The fracture occurs firstly in the outer layer due to fatigue
	Simultaneous failure of inner layer (fatigue) and outer layer (excessive deformation)

	References


